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Appendix A

In order to establish the theoretical basis for our analysis, we attempt to propose a theoretical

setup for two stock markets. This setup gives us some insight as to how we can study

contagion when two market portfolio indices are cointegrated. Then we implement a simple

simulation to reinforce this insight.

In our theoretical setup, we attempt to characterize the cointegration relation between

two stock markets 1 and 2, whose prices at time t, p1t and p2t, can be modelled, respectively,

as:

d ln p1t = α1d ln p2t + β1 (a+ ln p1t − b ln p2t) dt+ dB1t (A-1)

and

d ln p2t = α2d ln p1t + β2 (c+ ln p2t − d ln p1t) dt+ dB2t, (A-2)

where α1, α2, β1, β2, a, b, c, and d are constant parameters and B1t and B2t are composite

Wiener processes given by

B1t = σ11W1t + σ12W2t (A-3)

and

B2t = σ21W1t + σ22W2t. (A-4)

Let ln pt = [ln p1t, ln p2t]
T . Equations (A-1) and (A-2) can be presented in the matrix form

as the multivariate:

Ad ln pt = µdt+ C ln ptdt+ ΣdWt, (A-5)

where A =

[
1 −α1

−α2 1

]
, dWt = [dW1t, dW2t]

T , µ = [β1a, β2c]
T , C =

[
β1 −β1b
−β2d β2

]
,

and Σ =

[
σ11 σ12

σ21 σ22

]
. From equation (A-5), we have

d ln pt = A−1µdt+ A−1C ln ptdt+ A−1ΣdWt, (A-6)

which can be further simplified into

d ln pt = (µ̃− C̃ ln pt)dt+ Σ̃dWt. (A-7)

This expression implies that for the two stock market prices to be cointegrated their prices

must be governed by the same stochastic trend (e.g., the growth of the global capital markets)
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and be perturbed by shocks from same sources (e.g., common/correlated shocks to the global

capital markets). This is the basis for us to study contagion.

To see the above point clearer, we derive ln pt. Given that the matrix exponential, e−C̃t,

exists, from equation (A-7) we obtain the following expression:

e−C̃td ln pt + e−C̃tC̃ ln ptdt = e−C̃tµ̃dt+ e−C̃tΣ̃dWt. (A-8)

Rewriting the left-hand side of equation (A-8), we have

de−C̃t ln pt = e−C̃tµ̃dt+ e−C̃tΣ̃dWt. (A-9)

Now we integrate equation (A-9) from 0 to t resulting:

e−C̃t ln pt − ln p0 =

∫ t

0

e−C̃sµ̃ds+

∫ t

0

e−C̃sΣ̃dWs, (A-10)

where x0 is the initial value of {xt, t ≥ 0}. We simplify the first term on the right-hand side

of equation (A-10) to get

e−C̃t ln pt − ln p0 = − µ̃
C̃

(e−C̃t − 1) +

∫ t

0

e−C̃sΣ̃dWs, (A-11)

where 1 is a square matrix with elements being unity. Further simplifying equation (A-11)

yields

ln pt = eC̃t ln p0 −
µ̃

C̃
(1− eC̃t) +

∫ t

0

e−C̃(s−t)Σ̃dWs. (A-12)

This expression further implies that for the two stock market prices to be cointegrated

their prices must be governed by the same stochastic trend and be perturbed by the com-

mon/correlated shocks. As we note, the two market prices are not cointegrated either be-

cause they are not governed by the same stochastic trend, or are perturbed by uncom-

mon/uncorrelated shocks, or both. In this case, we could not study contagion which is

defined as the transmission of some shocks beyond their long-term interdependence.

In the following simulation, we propose a simple framework in which two stock markets,

market 1 and 2, are affected by common factors (without the deterministic trend) but,

sometimes, are affected by market-specific factors of their own. pit is the market portfolio

index (in log) for market i in period t. As can be seen later, this discussion can be easily

extended to the case of n markets.
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We assume that the market portfolio prices for these two markets are determined by two

k-factor models.1 That is, the market portfolio price for market i (i = 1, 2) has the following

data generate process: for t = 1, 2, . . . , T ,

pit =
k∑

j=1

bijfjt + vit, (A-13)

where fjt, j = 1, 2, . . . , k, are the k common factors and vit is the innovation unique to

market i (i = 1, 2). Here, pit ∼ I(1), fjt ∼ I(1), and vit ∼ I(0). The first difference of the

k-factor model for the stock market portfolio price leads to the k-factor model of the stock

market portfolio return. That is, let rit = ∆pit = pi,t − pi,t−1 is the market portfolio return

for stock market i in period t. Then the k-factor model of the stock market portfolio price

is rit =
∑k

j=1 bij∆fjt + ∆vit.

The k-factor model in equation (A-13) assumes that, other than market specific risk

factor vit, there is no factor that is unique to a specific market and that the common factors

jointly affect the two stock markets. If there exists such a market specific factor x1t that

systematically influences market 1 but not market 2,2 the price equation for market 1 must

be changed to

p1t =
k∑

j=1

b1jfjt + b1,k+1x1t + v1t. (A-14)

The price equation for market 2 remains to be

p2t =
k∑

j=1

b2jfjt + v2t. (A-15)

The data generating processes for p1t and p2t are quite different when x1t is I(1) but is also

a near I(2). This reflects that stock market 1 experiences a growth pattern that differs from

that of stock market 2.3

If b1,k+1 = 0 in equation (A-14), the two market portfolio prices (p1t and p2t) share the

1In our simulation exercise, for simplicity, we assume that two market portfolio prices are regulated by
their k-factor models.

2For easy of communication, we let market 1 to be exposed to x1t in addition to the common factors fjt,
where j = 1, 2, . . . , k and t = 1, 2, . . . , T . Please note that this is a simplification. Logically, this is equivalent
to let market i to be exposed to xit but market 1 is exposed to x′1t = x1t − x2t.

3Here, a I(1) but near I(2) process x1t can be used to describe this growth pattern. Such a process can
be generated from zt ∼ I(0) using (1− L)(1− ρL)x1t = zt, where |ρ|+ ε = 1 and ε is a very small number.
This implies x1t = (1 + ρ)x1,t−1 − ρx1,t−2 + zt.
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common factors and are cointegrated. If b1,k+1 6= 0, although these prices share the common

factors, they may not be cointegrated because of the presence of the factor that is unique

to market 1, x1t. Our simulation results show that when x1t has more influence on p1t than

f1t and f2t do, the cointegration between p1t and p2t may be weakened substantially. In this

case, we cannot establish the long-run equilibrium between the two stock markets and hence

we cannot evaluate contagion which is viewed as a departure from this long-run equilibrium.

We will report our simulation exercise and results at the latter part of the appendix.

In practice, because we cannot observe the common and market specific factors, we can

only rely on the identification of a cointegration relation between the two market portfolio

prices to establish the long-run equilibrium. The cointegration relation can take one of the

following forms:

p1t = α1 + β1p2t + e1t (A-16)

and

p2t = α2 + β2p1t + e2t, (A-17)

where αk and βk are cointegrating parameters and ekt is the error term in period t in cointe-

gration relation k for k = 1, 2. These error terms reflect deviations from these cointegration

relations.4

Now we study ekt for k = 1, 2 in period t. Substituting equation (A-13) into equations

(A-16) and (A-17), we obtain

k∑
j=1

b1jfjt + v1t = α1 + β1

(
k∑

j=1

b2jfjt + v2t

)
+ e1t, (A-18)

and
k∑

j=1

b2jfjt + v2t = α2 + β2

(
k∑

j=1

b1jfjt + v1t

)
+ e2t. (A-19)

Now we express ekt, k = 1, 2, as functions of v1t and v2t:

e1t = δ1t + (v1t − β1v2t) (A-20)

and

e2t = δ2t + (v2t − β2v1t), (A-21)

4One may note that α2 = −α1

β1
, β2 = 1

β1
, and e2t = − e1tβ1

.
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where

δ1t = −α1 +
k∑

j=1

(b1j − β1b2j)fjt (A-22)

and

δ2t = −α2 +
k∑

j=1

(b2j − β2b1j)fjt. (A-23)

Equations (A-20) and (A-21) represent the deviations from the cointegration relations given

in equations (A-16) and (A-17). In addition, the error terms of cointegration regressions, e1t

and e2t, are I(0). Because, for i = 1, 2, E(vit) = 0 and E(eit) = 0, then E(δit) = 0. That

is, the error terms of the k-factor models are expected to be zero and the residuals of the

cointegration regressions are expected to be zero. These facts also imply that the two stock

market portfolio prices are cointegrated if no other market specific factors to disturb specific

markets.

Although the k-factor models give us some traction on the underlying data generating

processes for the market portfolio prices, we cannot observe the common and market specific

factors. However, we can use the factor models to make sense the cointegration relations

shown by equations (A-16) and (A-17) and identify αk, βk, and ekt, k = 1, 2. In addition, we

also want to make sense of how the residuals from the cointegration relations, e1t and e2t,

are related to the unobservable market specific factors embedded in the underlying factor

models, v1t and v2t.

Please note that the general setup for n stock markets can be explained by the case of two

stock markets which are affected by a set of common and market specific factors. Following

our theoretical discussion, we can stack the error terms of cointegration regressions for two

stock markets, e1t and e2t, into

et =

[
e1t

e2t

]
. (A-24)

Now we can identify how et is related to vit (i = 1, 2), the orthogonal structural innovations

to markets 1 and 2, v1t and v2t, respectively. Now we stack them into

vt =

[
v1t

v2t

]
. (A-25)
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We can relate vt to et using the following structure:

et = A−1Bvt. (A-26)

where

A =

[
a11 a12

a21 a22

]
(A-27)

and

B =

[
b11 0

0 b22

]
. (A-28)

Let γ = 1
|A| . Because

A−1 =

[
γa22 −γa12
−γa21 γa11

]
, (A-29)

[
e1t

e2t

]
=

[
γa22 −γa12
−γa21 γa11

][
b11 0

0 b22

][
v1t

v2t

]
(A-30)

=

[
γa22b11v1t − γa12b22v2t
−γa21b11v1t + γa11b22v2t

]
.

Expanding the above expression as two separate equations, we obtain

e1t = γa22b11v1t − γa12b22v2t (A-31)

and

e2t = γa11b22v2t − γa21b11v1t (A-32)

We see that equations (A-31) and (A-32) share the similar structures of equations (A-20)

and (A-21) if δi = 0, i = 1, 2. In addition to δi = 0, i = 1, 2, if we further impose the

restrictions γa22b11 = γa11b22 = 1, γa12b22 = β1, and γa21b11 = β2, then equations (A-31)

and (A-32) share the identical structures of equations (A-20) and (A-21).

A simulation exercise can be used to illustrate the validity of using the cointegration

analysis to identify equilibrium relations among stock market prices when they are influenced

by a set of common factors. When some stock market prices are driven more by their market

specific factors, the identification of such equilibrium relations could be difficult.

To specify the parameters in the simulation exercise for the data generating processes

7



given in equations (A-14) and (A-15), we assume that the number of the factors is k = 2.

The sample size is T = 1000. The bi-factor models have the following parameters: b11 = 0.2,

b12 = 0.2, b13 = 0.4, b21 = 0.1, and b22 = 0.3. The factor 1, f1t, is generated by (1−L)f1t =

w1t ∼ N(2, 4). The factor 2, f2t, is generated by (1 − L)f2t = w2t ∼ N(1, 1). The error

terms of the bi-factor models are u1t ∼ N(0, 1) and u2t ∼ N(0, 1), respectively, and they are

statistically independent. In addition, we let x1t be a I(1) but near I(2) process. Such a

process can be generated from zt ∼ I(0) using (1−L)(1− ρL)x1t = zt, where |ρ|+ ε = 1 and

ε is a very small number. This implies x1t = (1 + ρ)x1,t−1 − ρx1,t−2 + zt. In our simulation

exercise, we let ρ = 0.97.

Figures A1 and A2 show the changes in two common factors, f1t and f2t. These two

factors jointly influence two stock market portfolio returns and, therefore, their prices p1t

and p2t. Figure A3 shows x1t, which is I(1) but near I(2) with ρ = 0.97. This factor enters

the data generating process of p1t when b13 = 0.4 (see Figure A4). When b13 = 0, this factor

does not enter the data generating process of p1t (see Figure A5). In this simulation exercise,

we do not allow p2t to be affected by another market specific factor beyond the two common

factors f1t and f2t. As can be seen in Figures A4 and A5, the return for stock market 1

portfolio can be affected by the factor that is specific to market 1.

Now we examine the plausible cointegration relation between the two stock market port-

folio prices. As shown in Figure A7, the two prices appear to be not cointegrated when the

stock market 1 portfolio price is influenced by x1t. As shown in Figure A8, the two prices

appear to be cointegrated when the stock market 1 portfolio price is not influenced by x1t.

The examination of the residuals of this cointegration regression based on the graphical

analysis (see Figure A9) and the cointegration test further confirms that the two prices

under this condition are not cointegrated. If we eliminate the impact of x1t on the stock

market 1 portfolio price, we can find a cointegration relation between the two prices based

on the graphical analysis (see Figure A10) and the cointegration test. Of course, the latter

is completely expected as the two prices are influenced jointly by the two common factors.
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The changes of common factor 1 (f1) time series

Time

ch
an

ge
s

0 200 400 600 800 1000

−
4

−
2

0
2

4
6

8

Figure A1: Changes of common factor f1
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The changes of common factor 2 (f2) time series
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Figure A2: Changes of common factor f2
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The factor specific for stock market 1 (x1) time series
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Figure A3: Factor specific for market 1, x1
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The return for stock market 1 (r1) time series with b13 = 0.4
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Figure A4: Market 1 portfolio return influenced by x1

12



The return for stock market 1 (r1) time series with b13 = 0
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Figure A5: Market 1 portfolio return not influenced by x1

13



The return for stock market 2 (r2) time series
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Figure A6: Market 2 portfolio return
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Figure A7: The link between two market portfolio prices with market 1 influenced by x1
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Figure A8: The link between two market portfolio prices with market 1 not influenced by x1
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Cointegration residuals with x1
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Figure A9: Non-stationary residuals in the cointegration regression with market 1 influenced
by x1
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Cointegration residuals without x1
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Figure A10: Stationary residuals in the cointegration regression with market 1 not influenced
by x1
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Appendix B

Without loss of generality, we assume that stock market portfolio returns follow the data

generating process of ∆pt = Πpt−1 + Γ∆pt−1 + et. This data generating process permits

dynamics and comovements within and across stock markets. The VECM has a VAR rep-

resentation

A(L)pt = et (B-1)

where A(L) = In−A1L−A2L
2 with A1 = Π + In + Γ = αβ′ + In + Γ and A2 = −Γ. Here

α is an n× r matrix and β an n× r matrix capturing the r cointegration relations among n

elements in pt.

Gonzalo and Granger (1995) define ∆Pt and ∆Tt as the innovations associated with the

permanent (P) and transitory (T) components of ∆pt, respectively. Their P-T decomposition

is as follows:

∆pt = ∆Pt + ∆Tt = θ1∆ft + θ2∆zt, (B-2)

where θ1 = β⊥(α′⊥β⊥)−1 and θ2 = α(β′α)−1 so that θ1 is an n× (n− r) matrix and θ2 is an

n× r matrix. ft = α′⊥pt and zt = β′pt.

Let G =

[
α′⊥

β′

]
, then Gpt =

[
ft

zt

]
. Thus, we have

GA(L)G−1

[
(1− L)In−r 0

0 Ir

]−1 [
∆ft

zt

]
= GA(L)G−1

[
ft

zt

]
= GA(L)pt = Get.

(B-3)

Equation (B-3) is the AR representation of

[
∆ft

zt

]
. To write it in an extensive form, define

the first n−r columns of G−1 as G−1n−r and the last r columns of G−1 as G−1r . Then we have[
In−r − (α′⊥ΓG−1n−r)L (−α′⊥ΓG−1r )L(1− L)

(−β′ΓG−1n−r)L Ir − (β′α + Ir + β′ΓG−1r )L+ (β′ΓG−1r )L2

][
∆ft

zt

]
= Get.

(B-4)

We can write equation (B-4) compactly as[
F11(L) F12(L)

F21(L) F22(L)

][
∆ft

zt

]
= Get (B-5)

Fij(L) can be derived according to equation (B-3). For example, F11(L) is an (n−r)×(n−r)
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matrix which is from “(the first n − r rows of G) ×A(L)× (the first n − r columns of

G−1)/(1− L)”. We can obtain F12(L), F21(L) and F22(L) similarly. Let L = 0, 1, we have

F11(0) = In−r, F11(1) = In−r − α′⊥ΓG−1n−r.

F12(0) = 0, F12(1) = 0,

F21(0) = 0, F21(1) = −β′ΓG−1n−r,

F22(0) = Ir, F22(1) = −β′α. (B-6)

Let uP
t = α′⊥et and uT

t = β′et. We can write equation (B-5) as[
F11(L) F12(L)

F21(L) F22(L)

][
∆ft

zt

]
=

[
uP
t

uT
t

]
. (B-7)

Inverting equation (B-7) we obtain[
∆ft

zt

]
=

[
F11(L) F12(L)

F21(L) F22(L)

][
uP
t

uT
t

]
, (B-8)

where

[
F11(L) F12(L)

F21(L) F22(L)

]
=

[
F11(L) F12(L)

F21(L) F22(L)

]−1
. We assume that Fij(L)’s exist and can

be determined by inverting the partitioned matrix. Therefore, we have

F11(L) = (F11(L)− F12(L)F22(L)−1F21(L))−1, (B-9)

F12(L) = −(F11(L)− F12(L)F22(L)−1F21(L))−1F12(L)F22(L)−1,

F21(L) = −F22(L)−1F21(L)(F11(L)− F12(L)F22(L)−1F21(L))−1,

F22(L) = F22(L)−1 + F22(L)−1F21(L)(F11(L)− F12(L)F22(L)−1F21(L))−1F12(L)F22(L)−1.

Let L = 0, 1, we have

F11(0) = In−k, F11(1) = F11(1)−1, (B-10)

F12(0) = 0, F12(1) = 0,

F21(0) = 0, F21(1) = −F22(1)−1F21(1)F11(1)−1

F22(0) = Ir, F22(1) = F22(1)−1.
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Furthermore, we can express ∆Pt and ∆Tt equation by equation compactly as[
∆Pt

∆Tt

]
=

[
θ1 0

0 θ2

][
∆ft

∆zt

]
(B-11)

=

[
θ1 0

0 θ2

][
In−r 0

0 (1− L)Ir

][
F11(L) F12(L)

F21(L) F22(L)

][
uP
t

uT
t

]

=

[
θ1F

11(L) θ1F
12(L)

θ2(1− L)F21(L) θ2(1− L)F22(L)

][
uP
t

uT
t

]
.

Therefore,

∆Pt = θ1F
11(L)uP

t + θ1F
12(L)uT

t , (B-12)

∆Tt = θ2(1− L)F21(L)uP
t + θ2(1− L)F22(L)uT

t .

It is worth noting that F12(1) = 0 in equation (B-10), which implies that the permanent

shock ∆Pt still has the transitory component θ1F
12(L)uT

t .

Substituting equations (B-12) into equation (B-2), we have

∆pt = ∆Pt + ∆Tt (B-13)

=
[
θ1F

11(L) + θ2(1− L)F21(L) θ1F
12(L) + θ2(1− L)F22(L)

] [ uP
t

uT
t

]

=
[

D1(L) D2(L)
] [ uP

t

uT
t

]
.

Here we define

D1(L) = θ1F
11(L) + θ2(1− L)F21(L). (B-14)

D2(L) = θ1F
12(L) + θ2(1− L)F22(L).

Because F12(1) = 0, D2(1) = 0, which means that uT
t only has transitory effect on the

level of pt. Hence, uP
t and uT

t are named the permanent and transitory shocks, respectively,

by Gonzalo and Ng (2001). This P-T decomposition differs from that of Gonzalo and Granger

(1995).
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However, if we focus on the components of D1(L), we find that the permanent shock still

has transitory component. Let L = 0, 1. We have

D1(0) = θ1F
11(0) + θ2F

21(0) = θ1In−r, (B-15)

D2(0) = θ1F
12(0) + θ2F

22(0) = θ2Ir,

D1(1) = θ1F
11(1) = θ1F11(1)−1,

D2(1) = θ1F
12(1) = 0.

Here, D1(0) = θ1In−r is the initial impact of a permanent shock, uP
t . D1(1) = θ1F11(1)−1

is the long-run pricing impact. Only when F11(1)−1 = In−r, i.e., Γ = 0, the initial impact of

uP
t is equal to its long-run pricing impact.

As we can see, different P-T decomposition methods always provide different identifica-

tions for permanent and transitory shocks. In fact, all the information can be fully reflected

in the level of pt if given long-enough period. What we focus on, especially in contagion

analysis, should be the deviation of the initial impact of innovations on stock markets from

the long-run pricing impact and why this deviation exists. Therefore, we only consider the

deviation of the initial impact from the long-run pricing impact and avoid using the terms

“permanent shocks” and “transitory shocks,” which could be ambiguous in our context.

The n × 1 vector of error terms, et, can be expressed in a structural relation with the

n × 1 vector of unobservable structural innovations vt: Aet = Bvt, where vt ∼ (0, In) and

A and B are n × n matrices of structural parameters. Some parameters are restricted to

0 or 1 for identification while others are to be estimated. A contains the contemporaneous

correlation coefficients among error terms while B is a diagonal matrix containing the stan-

dard deviations of structural innovations. Substituting et = A−1Bvt into equation (B-13),

we obtain

∆pt =
[

D1(L) D2(L)
] [ α′⊥

β′

]
A−1Bvt

= D1(L)α′⊥A−1Bvt + D2(L)β′A−1Bvt. (B-16)

According to equation (B-15), the initial impact of the structural innovation vt on the

level of pt is D1(0)α′⊥A−1B + D2(0)β′A−1B = θ1In−rα
′
⊥A−1B + θ2Irβ

′A−1B. The long-run

pricing impact is D1(1)α′⊥A−1B = θ1F11(1)−1α′⊥A−1B. Therefore, equation (B-16) can be
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further decomposed into

∆pt =
[

D1(L) D2(L)
] [ α′⊥

β′

]
A−1Bvt

= D1(L)α′⊥A−1Bvt + D2(L)β′A−1Bvt (B-17)

= D1(1)α′⊥A−1Bvt︸ ︷︷ ︸
(Long-run Pricing Impact

Denoted Φvt
)

+
(
D1(L)α′⊥A−1B−D1(1)α′⊥A−1B + D2(L)β′A−1B

)
vt︸ ︷︷ ︸

( Pricing Error
DenotedΦ∗(L)vt, and Φ∗(1)vt=0)

where the long-run pricing impact of innovations vt is measured by a matrix of scalars, Φ,

and the pricing error induced by the innovations has a dynamic effect, Φ∗(L), which satisfies

Φ∗(0) = θ1In−rα
′
⊥A−1B− θ1F11(1)−1α′⊥A−1B + θ2Irβ

′A−1B and Φ∗(1) = 0.

Finally, when Γ = 0 and β′A−1B = 0,

Φ∗(0) = D1(0)α′⊥A−1B−D1(1)α′⊥A−1B + D2(0)β′A−1B

= θ1In−rα
′
⊥A−1B− θ1In−rα′⊥A−1B + 0

= 0 (B-18)

When Γ = 0, then no long-run auto-correlations exist among the elements in pt. This

implies high efficiency of stock markets. When β′A−1B = 0, then the contemporaneous

innovations maintain their cointegration relations. This implies high efficiency of contempo-

raneous information transmission across stock markets. Only when these two conditions are

satisfied, stock markets are said to fully reflect new information in their own locations and

across locations.
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Appendix C

Figure C1 contains DAG results based on the innovations from our error correction model

for all eleven stock markets for the four periods. A DAG shows the causal flow among a

set of variables such that there are no directed cycles.5 The nodes of these graphs represent

variables on which data have been obtained while line segments connecting nodes (directed

edges) are generated by calculations of conditional statistical dependence among pairs of

variables (ceteris paribus). Under the assumption that variables v1, v2, v3, . . . , vn under study

follow Markov processes, one can simplify the empirical joint distribution of these variables

based on conditional statistical dependence.

Now we use X, Y , and Z to describe conditional statistical dependence among variables

v1, v2, v3, . . . , vn. For example, if there is a directed edge between variables X and Y like

X → Y , X is described as the parent of Y . In addition, a graph represented by Y ← X → Z

implies that the three variable, X, Y and Z have a relation such that X causes Y and Z. This

causal relationship implies that the unconditional association between Y and Z is nonzero

but the conditional association between Y and Z , given the knowledge of the common cause

X, is zero. Alternatively, a graph represented by Y → X ← Z implies that the unconditional

association between Y and Z is zero but the conditional association between them, given

the common effect X, is nonzero.

Following Pearl (2000), DAGs can be used to represent conditional independence as

implied by the recursive product decomposition:

Pr(v1, v2, . . . , vn) =
n∏

i=1

Pr(vi|pai), (C-1)

where Pr is the probability of variables v1, v2, . . . , vn and pai (also called parents) represents

a set of variables that immediately causes vi.

In Spirtes et al. (2000), a causal search algorithm, called the PC algorithm, is provided

for making inference on directed acyclic graphs from observational data. It begins with a

complete undirected graph, where every variable is connected to every other variable. Edges

between variable are then removed based on vanishing correlation or partial correlation, at

a predetermined level of significance. The significance level is a threshold for independence.

The higher it is set, the less discerning the PC algorithm is when determining the indepen-

5This means that it is not possible to start at a variable and follow a directed path back to the same
variable.
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dence between two variables. Spirtes et al. (2000, p. 116) recommend that one drop the level

of significance used as the number of observation increases. For small samples less than 100

observations, a significance level of 20% is recommended. For larger samples greater than

100 and less than 300 observations, they suggest a 10% significance level. In our research,

because we have over two hundred observations for each period, we set the significance level

at 10%. Therefore, if estimated correlations and partial correlations linking some variables

that form edges are not statistically significantly different from zero at the 10% significance

level, the causal search algorithm will remove those edges. The software TETRAD IV is

employed to conduct the DAG analysis.

We apply the DAG to identify the dependence among the stock markets so that we

can place zero restrictions on matrix A in our SVAR model. This strategy permits that

restrictions imposed on matrix A can accurately reflect the data generating process. The

PC algorithm sometimes generate graphs with cycles and bidirected edges, as shown in Panel

B (CN ↔ HK) and Panel D (CN ↔ HK) of Figure C1. Since ignoring undirected edges

might distort our SVAR analysis, both directions are considered for the undirected edge in

the SVAR analysis with the level of significance set to 5%.

In et = A−1Bvt of our SVAR model, two 11×11 matrices A and B have to be estimated.

Since AΣA′ = BB′, the expressions on both sides are symmetric. This fact imposes 11(11+

1)/2 restrictions on the 2×112 unknown elements in A and B. Therefore, in order to identify

A and B, we need to supply at least 2 × 112 − 11(11 + 1)/2 = 176 additional restrictions.

The parameter estimation of matrix A for the four periods are reported in Table C1. LR

tests for over-identification are also reported in Table C1.
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Figure C1: DAG-recovered patterns of contemporaneous shock transmission among eleven
stock markets during four cointegration periods

Figure C1: Panel A (Period 1) Figure C1: Panel B (Period 2)

Figure C1: Panel C (Period 3) Figure C1: Panel D (Period 4)
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Table C1: Parameter estimation of matrix A for four periods
Ai,j US UK JP HK TW SG KR IN ML CN ID

Panel A: Period 1 (Aug 24,1998-Aug 10,1999)

US 1.0000

UK
-0.3452

1.0000
-0.1553 -0.2149 0.0928

(0.0669) (0.0538) (0.0443) (0.0422)

JP 1.0000

HK
-0.6415 -0.3784

1.0000
(0.1003) (0.0847)

TW
-0.2831

1.0000
(0.0603)

SG
-0.2093 -0.5681 -0.1692

1.0000
(0.0872) (0.0580) (0.0615)

KR
-0.3308 -0.2691

1.0000
(0.1197) (0.1224)

IN
-0.6019

1.0000
(0.0946)

ML
-0.6573 -0.2125

1.0000
(0.1362) (0.0883)

CN
0.1878 -0.1610

1.0000
(0.0893) (0.0652)

ID
-0.1724

1.0000
(0.0464)

Log likelihood: 5166.19
LR test for over-identification:

χ2 (37) 41.907 [0.2664]

Panel B: Period 2 (Sep 6,2001-Aug 26,2002)

US 1.0000

UK
-0.4777

1.0000
-0.2812 -0.1661

(0.0820) (0.0919) (0.0747)

JP
-0.4482

1.0000
(0.0828)

HK
-0.2480 -0.3743

1.0000
(0.0665) (0.0547)

TW 1.0000
-0.4810
(0.0887)

SG
-0.1590 -0.4293 -0.1886

1.0000
-0.1381

(0.0580) (0.0772) (0.0445) (0.0644)

KR
-0.3096 -0.4383 -0.4104

1.0000
(0.0808) (0.0968) (0.0599)

IN
-0.1766

1.0000
(0.0425)

ML
-0.3627 -0.1055

1.0000
-0.0797

(0.0414) (0.0454) (0.0396)

CN
-0.3021 0.1787

1.0000
(0.0890) (0.0618)

ID
-0.5489 -0.0926

1.0000
(0.0832) (0.0603)

Log likelihood:
LR test for over-identification: 5782.21

χ2 (33) 26.8752 [0.6298]

Note: Parameter estimates of matrix A in the model et = A−1Bvt are reported in Panels A–D for different cointegration periods,
respectively. The elements of A show contemporaneous correlations among observed residuals. The element (i, j) of matrix A, Ai,j ,
gives how the observed residual of market i instantaneously responds to that of market j. Th table also reports the LR test results for
over-identification. Standard errors are given in parentheses, while p-values are reported in brackets.
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Table C1: Parameter estimation of matrix A for four periods—continued
Ai,j US UK JP HK TW SG KR IN ML CN ID

Panel C: Period 3 (Dec 21,2006-May 9,2008)

US 1.0000

UK
-0.4145

1.0000
-0.2479

(0.0671) (0.0353)

JP
-0.8227

1.0000
(0.0766)

HK
-0.9892

1.0000
(0.0557)

TW
-0.4324

1.0000
(0.0383)

SG
-0.3443 -0.4411

1.0000
(0.0518) (0.0388)

KR
-0.2945 -0.2565 -0.3409

1.0000
(0.0521) (0.0387) (0.0513)

IN
0.2061 -0.3599 -0.4978 -0.2833

1.0000
(0.0803) (0.0656) (0.0894) (0.0810)

ML
0.1046 -0.2112 -0.3049 -0.2364

1.0000
(0.0507) (0.0426) (0.0626) (0.0445)

CN
-0.5800

1.0000
(0.1244)

ID
-0.1975 -0.6186 0.0623

1.0000
(0.0775) (0.0582) (0.0309)

Log likelihood:
LR test for over-identification: 8526.734

χ2 (27) 30.8331 [0.4500]

Panel D: Period 4 (Oct 28,2008-Nov 20,2009)

US 1.0000

UK
-0.3606

1.0000
-0.3222

(0.0526) (0.0442)

JP
-0.6522

1.0000
0.0148

(0.0634) (0.0857)

HK
-0.8587

1.0000
(0.0741)

TW
-0.6434

1.0000
(0.0400)

SG
-0.6194 -0.2471

1.0000
(0.0453) (0.0504)

KR
-0.2569 -0.1803 -0.4533

1.0000
(0.0622) (0.0662) (0.0636)

IN
-0.2295 -0.1994 -0.2899 -0.1373

1.0000
(0.0809) (0.0745) (0.0881) (0.0671)

ML
-0.0964 -0.1124 -0.1870

1.0000
(0.0265) (0.0303) (0.0297)

CN
-0.2890 -0.3098

1.0000
(0.0710) (0.1787)

ID
-0.2683 -0.5011

1.0000
(0.1023) (0.1145)

Log likelihood:
LR test for over-identification: 6472.153

χ2 (33) 32.6746 [0.3600]

Note: Parameter estimates of matrix A in the model et = A−1Bvt are reported in Panels A–D for different cointegration periods,
respectively. The entry A examines the contemporaneous correlation among observed residuals. The element (i, j) of matrix A, Ai,j ,
gives how the observed residual of market i instantaneously responds to that of market j. The table also reports the LR test results for
over-identification. Standard errors are given in parentheses, while p-values are reported in brackets.
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Appendix D

In this appendix, we report the contagion measures for the four periods across all stock markets

studied in this paper in Table D1. More specifically, the estimate contagion measures are reported

in an 11 × 11 matrix for each cointegration period in Table D1. The element of the matrix, Ci,j ,

measures the contagion effect from a given market j (column) to another market i (row). In every

case, the significance of the statistics is based on the Monte Carlo simulation method with 1000

replications.

Note that in Table D1 the elements in the first row, the second column and the diagonal are

empty. As we define a trading day that starts from the U.S. and ends in the U.K., the markets that

open after the U.S. market closes cannot affect the U.S. market. Hence, the contagion measures in

the first row do not exist. By the same token, the U.K. market cannot affect other stock markets

in the same trading day based on our trading day definition. Hence, the contagion measures in the

second column do not exist either. Diagonal elements are empty as there are no contagion measures

from a market to its own (Cj,j is always equal to zero).

As shown in Table D1, little contagion effect is found between some Asian stock markets (In-

donesia, Malaysia, China and India) for all cointegrated periods. Therefore, we focus on the Ci,j

values that are relevant to shocks from the U.S., Japan and Hong Kong markets.

To conduct a robustness test, we also use a different trading day definition, assuming that

a trading day starts from the U.K. market and ends in the Asian markets. We find that this

alternative trading day definition changes little to our analysis and conclusions, which are quite

robust.

To provide a context, we also report the correlations among each and every pair of market

portfolio index portfolio returns in Table D2.
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Table D1: Estimates of contagion measures Ci,j between stock markets for four periods

Ci,j US UK JP HK TW SG KR IN ML CN ID

Panel A: Period 1 (Aug 24,1998-Aug 10,1999)
US
UK -0.0074 0.0373 0.0112 -0.0464 -0.0194 -0.0044 -0.0003 -0.0179 -0.0010 0.0079
JP -0.0029 -0.0002 -0.0074 -0.0001 -0.0005 -0.0001 -0.0031 -0.0008 -0.0026
HK 0.0380 -0.0068 -0.0895 -0.0120 -0.0168 -0.0025 -0.0026 -0.0005 -0.0030
TW 0.0324 -0.0871 -0.1415 -0.1202 -0.0011 0.0000 -0.1436 -0.0002 -0.0009
SG 0.1080 -0.1074 -0.3160 -0.0245 -0.0003 0.0000 -0.0575 -0.0012 -0.0085
KR -0.1151 0.0281 -0.3673 -0.0068 -0.1783 -0.0002 -0.0141 -0.0001 -0.0012
IN 0.0939 -0.0223 -0.1103 -0.0520 -0.1306 -0.0398 -0.0261 -0.0009 -0.0004
ML -0.0813 -0.0014 0.0117 -0.1890 -0.2623 -0.0424 -0.0170 -0.0004 -0.0043
CN -0.0811 -0.0148 -0.0508 0.0255 -0.0747 -0.0014 -0.0012 -0.0342 -0.0005
ID -0.0209 0.0002 -0.0017 0.0002 -0.0127 -0.0001 -0.0238 -0.0040 -0.0005

Mean -0.0036 -0.0235 -0.0970 -0.0392 -0.0812 -0.0107 -0.0045 -0.0304 -0.0013 -0.0015
Panel B: Period 2 (Sep 6,2001-Aug 26,2002)
US
UK -0.2302 0.0026 -0.0441 -0.0085 0.0000 -0.0008 -0.0960 -0.0135 -0.0035 0.0081
JP 0.0654 -0.0610 -0.0058 0.0000 -0.0045 -0.2966 -0.0549 -0.0101 -0.0890
HK 0.1717 0.0186 -0.1027 -0.0045 -0.0082 -0.1968 -0.0106 -0.0658 -0.0021
TW 0.0111 -0.0948 -0.2107 -0.1043 -0.0827 -0.7979 -0.7915 -0.0353 -0.5955
SG 0.0958 -0.0942 -0.1219 -0.1337 -0.0064 -0.2762 0.0000 -0.0202 -0.1381
KR 0.1335 -0.1787 -0.1025 -0.1100 -0.0050 -0.5587 -0.2201 -0.0009 -0.3151
IN -0.0967 0.0003 -0.0071 0.0307 -0.0077 -0.0286 -0.5484 -0.0524 -0.1764
ML -0.0033 -0.0099 0.0290 -0.0761 -0.0407 -0.0004 0.0111 -0.0158 -0.0298
CN -0.2650 -0.0388 -0.0306 -0.2050 -0.0130 0.0000 -0.0570 -0.3055 -0.0304
ID 0.0688 -0.0353 -0.0571 -0.0401 0.0000 0.0048 -0.1374 -0.0136 -0.0141

Mean -0.0049 -0.0478 -0.0673 -0.0724 -0.0195 -0.0141 -0.2673 -0.2176 -0.0242 -0.1520
Panel C: Period 3 (Dec 21,2006-May 9,2008)
US
UK -0.7976 0.0139 0.0222 -0.0289 -0.0123 0.0000 -0.0199 -0.0119 -0.0029 -0.0711
JP -1.4624 -0.0659 -0.1562 -0.0617 -0.0085 -0.0118 -0.0166 -0.0010 -0.0361
HK -1.0913 0.1773 -0.2358 -0.0571 -0.0142 -0.0548 -0.0288 -0.0025 -0.0960
TW -0.2348 0.1461 0.0081 -0.1415 -0.1006 -0.0025 -0.0016 -0.0018 -0.6866
SG -0.9672 0.3093 0.1693 -0.2432 -0.0239 -0.0428 -0.0385 -0.0001 -0.2930
KR -1.4103 0.2240 0.0668 0.0642 -0.0531 -0.0273 -0.0455 -0.0001 -0.1700
IN -2.3230 0.3475 0.2140 -0.2148 0.2020 -0.1403 -0.1195 -0.0057 -0.4823
ML -0.6915 0.0252 0.0155 0.0449 -0.1018 -0.0136 0.0540 -0.0006 0.0000
CN -1.8602 0.0137 -0.0325 -0.0892 0.0336 -0.0082 0.0001 -0.3973 -2.0686
ID -2.3949 0.4112 0.2315 -0.4013 -0.2429 -0.1405 -0.0001 -0.1231 -0.0058

Mean -1.3233 0.1854 0.0699 -0.1400 -0.0483 -0.0500 -0.0117 -0.0870 -0.0023 -0.4337
Panel D: Period 4 (Oct 28,2008-Nov 20,2009)
US
UK -0.1536 0.0048 0.0156 0.0011 -0.0079 -0.1217 -0.0008 -0.7890 -0.0062 0.0211
JP -0.2843 0.0000 -0.0175 -0.0283 -0.0606 -0.0360 -1.0541 -0.0164 -0.0171
HK -0.1981 0.0111 -0.0002 -0.1124 -0.1717 -0.0193 -0.9435 -0.0101 -0.0302
TW 0.0886 -0.0127 -0.2993 -0.1080 -0.0145 -0.0281 -0.6821 -0.0081 -0.0213
SG -0.2200 0.1475 0.2276 0.0371 -0.1913 -0.0621 -0.7941 -0.0005 -0.0107
KR -0.4203 0.1489 0.1068 0.0704 -0.0090 -0.2749 -1.4680 -0.0058 -0.0184
IN 0.0451 -0.1105 -0.3209 -0.0602 -0.3447 -0.1452 -0.3279 -0.0138 -0.1075
ML -0.0223 -0.0603 -0.0480 -0.0044 -0.0145 0.0006 -0.0903 -0.0011 -0.0056
CN 0.0371 0.0410 -0.1421 -0.0120 -0.0112 0.0001 -0.0041 -0.2706 -0.0077
ID -0.2630 0.1458 0.0562 -0.0143 0.1128 -0.1244 -0.0005 -0.3131 -0.0128

Mean -0.1391 0.0351 -0.0449 0.0000 -0.0581 -0.0921 -0.0573 -0.7381 -0.0083 -0.0219

Note: The contagion measure Ci,j from market j (column) to market i (row)

(
Ci,j =

(
Φi,j+Φ∗(0)i,j
Φj,j+Φ∗(0)j,j

)2

−
(

Φi,j
Φj,j

)2
)

is

reported for different cointegration periods. In every case, the significance of a contagion measure is based on the Monte
Carlo simulation method with 1000 replications. The 5% quantile of Ci,j that is greater than 0 (in bold font) indicates a
significant contagion effect. The mean contagion measures are also reported for all markets and periods.
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Table D2: Correlations among the eleven stock market portfolio daily returns

US UK JP HK TW SG KR IN ML CN ID

Panel A: Correlation matrix, July 3,1997-April 30,2014
US 1.0000
UK 0.3977 1.0000
JP 0.5096 0.4036 1.0000
HK 0.4919 0.4717 0.5551 1.0000
TW 0.3864 0.3088 0.4497 0.4996 1.0000
SG 0.4195 0.4490 0.5099 0.7240 0.5077 1.0000
KR 0.3727 0.3440 0.4888 0.5369 0.4854 0.4997 1.0000
IN 0.2906 0.2741 0.3586 0.5043 0.3576 0.5191 0.3914 1.0000
ML 0.2824 0.2277 0.2817 0.4403 0.2927 0.4631 0.3224 0.4250 1.0000
CN 0.1496 0.1039 0.1904 0.2750 0.1757 0.1997 0.1343 0.1673 0.1329 1.0000
ID 0.2666 0.3341 0.3392 0.4610 0.3261 0.4470 0.3543 0.3713 0.2435 0.1767 1.0000

Mean 0.3567 0.3241 0.3967 0.4916 0.3575 0.4257 0.3006 0.3212 0.1882 0.1767
Panel B: Correlations, December 21,2006-May 9,2008
US 1.0000
UK 0.3567 1.0000
JP 0.4361 0.5147 1.0000
HK 0.4952 0.5631 0.8195 1.0000
TW 0.5683 0.4505 0.6258 0.6825 1.0000
SG 0.5021 0.6265 0.7489 0.8764 0.6721 1.0000
KR 0.4465 0.6188 0.7805 0.8025 0.7031 0.8005 1.0000
IN 0.4798 0.5945 0.6850 0.8406 0.6410 0.8674 0.7781 1.0000
ML 0.5912 0.4881 0.6119 0.7521 0.7511 0.7736 0.7011 0.8290 1.0000
CN 0.2681 0.2270 0.3478 0.4762 0.4116 0.3587 0.2818 0.3671 0.3898 1.0000
ID 0.4012 0.5382 0.6479 0.7686 0.5955 0.7154 0.6668 0.7550 0.6913 0.4592 1.0000

Mean 0.4545 0.5135 0.6584 0.7427 0.6291 0.7031 0.6070 0.6504 0.5405 0.4592

Note: The correlations are calculated based on the daily market portfolio return data for the U.S. (US), U.K. (UK),
Japan (JP), Hong Kong (HK), Taiwan (TW), Singapore (SG), Korea (KR), Indonesia (ID), Malaysia (ML), China
(CN), and India (ID). The U.S. data at t − 1 are aligned with the data of other countries at t due to the selected
time zone order from the U.S. stock market, to the Asian stock markets, and, then, to the U.K. stock market.
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