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A Brief Summary on Binary Choice Models for Training Incidence  

 

The incidence of employer-supported training represents the match of the rational 

decisions of employers and employees. That is, it is the coincidence of the training 

offering from employers and the acceptance, voluntary or compulsory, on the part of 

employees. Hence, both firm and individual employee characteristics may explain why 

such training incidence occurs. 

 

The bivariate statistics in a cross-tabulation may show the relationship between 

training incidence and any one of firm and employee characteristics. But this may be 

spurious without an appropriate control over other relevant conditional factors. Hence it 

is desirable to consider appropriate models which permit inference on partial correlations 

conditional on a fuller set of information. Given the binary nature of the variable of 

interest – training participation, natural choices are binary choice models such as probit 

and logit models.  
 

Several models for binary choice are suitable for analyzing the independent 

variable  y i  , for individual  i,  that takes on the value of either 0 or 1. Here 1,2, , .i N= …   

It is also assumed that this choice can be analyzed with reference to a vector of 

determinants  ix  , for individual  i  . The vector  ix   will affect the binary choice  y i   via 

a set of parameter  β  . We can characterize the probability of taking either choice as  

 

Pr[ 1| ] ( )i i iy F ′= = ββββx x  

or  

Pr[ 0 | ] 1 ( ).i i iy F ′= = − ββββx x  

 

One simplest approach to model this binary choice is to use the linear regression 

model so that  

 

( ) .i iF ′ ′=β ββ ββ ββ βx x  

 

This approach is to assume that  

i i iy u
′= ++++ββββx  

or  

[ | ] 1 Pr[ 1| ] 0 Pr[ 0 | ] Pr[ 1| ] ( ).i i i i i i i i iE y y y y F ′= ⋅ = + ⋅ = = = =x ββββx x x x  

 

However, this approach will generate forecasts that are not limited to [0, 1]. The model of 

this kind typically suffers from heteroscedasticity. In the event of using this approach, the 

White generalized heteroscadasticitic standard errors should be used. 

 

Two other alternatives are slightly more involved. Generally, the cumulative 

distribution function (cdf)  ( )iF ′ββββx  should have the following properties:  
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F−∞ = 0, F∞ = 1, and fx =
dFx

dx
> 0.   #   

 

 That is,    F   is a nonlinear function of ix ,  

 

( )
( )i

i k

ik

dF
f

dx
β

′
′=

ββββ
ββββ

x
x  

where x ik   is the  k  th element in  ix   and  βk   is the  k  th element in  ββββ  . 

 

 

For the probit model, we use the standard normal distribution for the cdf  F  :  

 

Fx = Φx = 1

2π
∫
−∞

x

exp− 1
2

w2dw.   #   

 
 

Let the latent or unobservable variable be  y i
∗

  which can be described as  

 

, (0, 1).
iid

i i i iy u u N
∗ ′= ∼++++ββββx  

 

The observable choice  y i   is determined as follows:  

y i = 1 if y i
∗ > 0,

y i = 0 if y i
∗ ≤ 0.

  #   

 
Note that the assumption of the distribution of  u i   following the standard normal 

distribution  N0, 1   is not too restrictive. In the event that we have  u i
iid∼    N0,σ2   we 

can always rewrite the model for  y i
∗

  as  /iy σ∗    so that      

 

/ / / , / (0, 1)
iid

i i i iy u u Nσ σ σ σ∗ ′= + ∼ββββx  . 

 

 

Then we can express  Pr[ 1| ]i iy = x   as 

 

Pr[ 1| ] Pr[ 0] Pr[ 0],i i i i iy y u
∗ ′= = > = >++++ββββx x  

 

which can be further written as  

 

Pr[ ] Pr[ ] Pr[ ] ( )i i i i i i iu u u′ ′ ′ ′= > − = < = Φ> −> −> −> −β β β ββ β β ββ β β ββ β β βx x x x  
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where Φ  is the cumulative normal distribution function.  

 

For the logit model, we use the logistic function Fx  , which is defined as  

 

Λx = 1
1 + e−x = ex

1 + ex .   #   

 

 The first derivative of  Λx   is  

 

( )
1

2

( )( )
( ) ( ) .

1

x

x

e x

e

x

x e
x x

x x e

+
∂∂Λ

= = Λ Λ − =
∂ ∂ +

 

This implies that  
∂Λx
∂x  is symmetric around zero, which further implies  

 

Λ−x = 1 − Λx  . 

 

The way to incorporate the logistic function into the binary choice model is to identify 

the logarithm of the odds ratio as a function of 
i

′ββββx . That is, for  Pr( 1| )i i iP y= = x   and 

 

     1 Pr( 0 | )i i iP y− = = x , 

 

ln .
1

i
i

i

P

P

′ 
= 

− 
ββββx  

Then, solving for  P i   gives  

1
( ).

1 1

i

i i
i i

e
P

e e

′

′ ′

′

−
= = = Λ

+ +

ββββ

β ββ ββ ββ β
ββββ

x

x x
x  

 

 

Both probit and logit models can be estimated by the method of maximum 

likelihood. The likelihood function for the binary models is define as 

 
(1 )

1( ; , ) ( ) 1 ( )
i iy y

N

i i iL F F
−′ ′

=
   = Π −   β β ββ β ββ β ββ β βy X x x  

 

where  
1 2[ , , , ]Ny y y ′

…====y   and  
1 2[ , , , ]N

′
…====X x x x  . The corresponding log-

likelihood function is given by  

{ }
1

ln ( ; , ) ln ( ) (1 ) ln 1 ( ) .
N

i i i i

i

L y F y F′ ′

=

 = + − − ∑β β ββ β ββ β ββ β βy X x x  

 



4 

 

The above likelihood and log-likelihood functions incorporate binary choices and their 

corresponding probabilities naturally; that is, when  y i = 1   [or  y i = 0  ],  ( )iF
′ββββx   [or  

1 ( )iF ′− ββββx  ] enters the likelihood function but  1 ( )iF ′− ββββx   [or  ( )iF ′ββββx  ] does not. 

About the log-likelihood function, we can make two remarks: (1) Because  ( )iF ′ββββx   and  

1 ( )iF ′− ββββx   are probabilities which are less than 1, the logarithm of which is negative,  

ln ( ; , )L ββββ y X   is bounded above by zero. (2)  ln ( ; , )L ββββ y X   is globally concave with 

respective to  β  . For the probit model,  ( )iF ′ββββx   takes the form of  ( )i

′Φ ββββx  . For logit 

model is used, it is replaced by  ( )i

′Λ ββββx  . The two models are closed to each other in 

terms of the predicted probabilities and the maximized values of the log-likelihood 

functions. Intuitively, the real difference is that two models scale  
i

′ββββx   differently: under 

the logistic function  var( )
3

i

π′ =ββββx   but  var( ) 1i

′ =ββββx   under the standard normal 

distribution. In order to determine what the variables are included in ix , both Wald (W) 

and the likelihood ratio (LR) tests can be used.
 1

 

 

The maximum likelihood estimates of the parameters ββββ , 
�

ββββ , cannot be 

interpreted  straightforwardly as ix  affects the probability of binary choice  iy   in a 

nonlinear fashion. Hence, using  
�

ββββ   to infer qualitative, rather than marginal, impacts is 

much common. However, for the logit model, we have 

 

ln .
1

i
i

i

P

P

′ 
= 

− 
ββββx  

This is quite useful for us. 

 

 It might be useful to explain the odds ratio and its natural log here. Note that 

between the odds ratio of .9/.1 = 9 and the odds ratio of .1/.9 = .11, there is asymmetry. 

However, the log of the odds ratio .9/.1 is ln(9) = 2.217 while the log of the odds 

ratio .1/.9 is ln(1/9) = -2.217. Not only symmetry is preserved but also the log of the 

odds ratio of one choice is exactly opposite to the log of the odds ratio of another choice. 

When the probability of one choice and that of another choice is both .5 (both are equally 

likely), the odds ratio is .5/.5 = 1 and the log of the odds ratio is ln(1) = 0. The odds ratio 

of 1 means that no difference between the two choices in terms of probabilities. 

 

The odds ratio can be obtained from the above equation:  

                                                           
1
 A formal test between the two models is the likelihood ratio test using two likelihood function values 

which has an asymptotic  χ2
  distribution with one degree of freedom. More specifically, at the 5% 

significance level, if twice the difference between two log-likelihood function values is greater than  

χ0.05
2 1 = 3. 84  , then one poorly fit model can be rejected. 
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 exp( ).
1

i
i

i

P

P
′=

−
x ββββ  

That is, the marginal effects of changes in the explanatory variables on the odds ratio can 

be measured by exp( )ββββ . When exp( )κβ  is equal to 1, a change in the corresponding kth 

explanatory variable does not affect the odds ratio (e.g., neutral in changing the 

probability of workplace training participation). When exp( )κβ  is greater than 1, a 

change in the corresponding kth explanatory variable increases the odds ratio (e.g., 

increase the probability of workplace training participation). When exp( )κβ  is less than 1, 

a change in the corresponding kth explanatory variable decrease the odds (e.g., decrease 

the probability of workplace training participation). 

 

 Of course, generally it is also possible to compute the marginal probability for 

both probit and logit models. The marginal impact of the change of the kth element of 
ix  

for the probit model is  

 
( )

( )i
k

ikx
φ β

∂Φ ′=
∂

i

x
x ββββ  

where φ  is the normal density function. The marginal impact of the change of the kth 

element of ix
 for the probit model is  

 

( )
2

( )
( ) ( )

1

i

i

k k

ik

e

x e
β β

′

′

′∂Λ ′ ′= Λ Λ − =
∂ +

x

i

i i
x

x
x x

ββββ

ββββ

ββββ
β ββ ββ ββ β  

The terms ( )φ ′
i

x ββββ  and  

( )
2

( ) ( )
1

i

i

e

e

′

′

′ ′Λ Λ − =
+

x

i i
x

x x
ββββ

ββββ
β ββ ββ ββ β  in the above marginal probability 

equations are called correction factors.  There are two approaches to compute the 

marginal probabilities. In the first approach, the correction factor could be evaluated at 

the sample means of ix  for all i. But the “average” may not be representative of the 

population. In the second approach, the correct factors are computed for all i and then the 

average of all correction factors is used to compute the marginal probabilities. 
 

 This paper will use the logit model in this project because it gives ββββ  an intuitive 

interpretation in terms of odds ratios. That is, we use exp( )ββββ  to measure the marginal 

effects of changes in the explanatory variables on the odds ratio. 

 

The several statistics for the logit model need to be explained. Since that there is really no 
2

R  (the coefficient of determination; a measure of goodness of fit for the ordinary least 

squares regression), econometricians have proposed several alternatives. Based on the 

log-likelihood function of the model with only a constant term 
2 ln nullL−

 and that of the 

model with all predictors 
2 ln fullL−

, Cox & Snell Pseudo-
2

R   is defined as 
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2 /

2 2
1

2

N

null

full

LnL
R

LnL

 −
= −  

−  
 

 

Because this 
2

R value cannot reach 1.0, Nagelkerke has therefore modified it.  The 

correction increases the Cox and Snell version to make 1.0 a possible value for 
2

R . 

Nagelkerke Pseudo-
2R  is defined as 

( )

2 /

2

2 /

2
1

2

1 2

N

null

full

N

null

LnL

LnL
R

LnL

 −
−  

−  =
− −

 
 


