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Abstract

This paper examines the risk of value investing from the point of view of a

myopic loss-averse investor holding a diversified portfolio and relying on infrequent

portfolio rebalancing. This closely resembles purchasing a large portfolio, such as

those created by BARRA, and following a buy-and-hold investment strategy. In

these circumstances, which portfolio, value or growth, is riskier to a myopic loss-

averse investor? To facilitate analysis, a myopic loss ranking and a corresponding

statistical procedure are developed and applied to investment-style data provided

by BARRA. The paper qualifies the conditions under which value investing is more

risky in North American financial markets.
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1 Introduction

This paper examines the risk of value investing from the point of view of a myopic

loss-averse investor holding a diversified portfolio and relying on infrequent portfolio

rebalancing. This closely resembles purchasing a large portfolio, such as those created

by BARRA, and following a buy-and-hold investment strategy. The question then is: in

these circumstances, which portfolio, value or growth, is riskier to a myopic loss-averse

investor?

What constitutes risk and how it should be measured is the subject of some debate.

In regard to value investing, the essential background to this debate is the observed

empirical regularity called value superiority ; that is, the finding that value investment

consistently yields superior returns to other investment strategies, notwithstanding the

use of different practical means to differentiate value from other stocks. Notable ex-

amples documenting value superiority are Bantz (1981), De Bondt and Thaler (1985),

Rosenburg, Reid and Lanstein (1985), Sharpe (1988, 1992), Chan, Hamao and Lakon-

ishok (1991), Fama and French (1992, 1996, 1998), and Lakonishok, Schleifer and Vishny

(1994).

At the level of practical investment policy, consider the conversation on risk between

Eugene Fama and Peter Tanous [see Tanous (1997)]. Fama argues that value stocks are

a more risky investment than growth stocks implying that, per unit of price, growth

stocks are held at lower expected returns than value stocks (which must have higher

expected returns to compensate for the higher risk of holding them). This reasoning is

a theoretical inference from the empirical observation of value superiority. The Tanous

rejoinder begins by noting that growth stocks are valued at a high multiple of current

earnings, to reflect the belief that anticipated earnings are high. “So if a growth stock

falters on its anticipated growth path, [its price] declines precipitously because it no

longer deserves the [high] multiple that had previously been awarded to it ... . Therefore,
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a lot of people think that growth stocks ... are riskier.” In addition, it can be argued

that the faltering must initially occur when the price-earnings ratio lies in the upper

tail of the overall price-earnings ratio distribution, in view of the valuation with a high

multiple. Thus the likelihood that a lower price-earnings ratio can prevail is high, and

the downside risk is therefore high. On the contrary, value stocks are low-multiple stocks

and so their price-earnings ratio must lie in the lower tail of the overall distribution, and

hence the likelihood of an even lower price-earnings ratio must be small. The downside

risk must, therefore, be greater for growth stocks than it is for value stocks. Quite clearly

these two views of risk differ, the former being the overall implicit risk of the higher

expected returns on value stocks and the latter the greater downside risk on the price of

growth stocks.

Turning now to the empirical finance literature seeking to explain value superiority

and the associated risk, this divides itself into three distinct streams. The first is repre-

sented by De Bondt and Thaler (1985) which argues that value superiority is a natural

consequence of exploiting “contrarian” movements in market prices. Winning (losing)

portfolios tend to be losing (winning) portfolios later on as calculated from the cumu-

lated average residuals in a capital asset pricing model (CAPM) for US stocks during the

period 1926-82. The earnings-to-price ratio is used to differentiate winners from losers.

However, there is no direct attack on the risk of value investment, but a value premium

is determined as that part of the return on value stocks which is not accounted for by

the broad market portfolio return and its beta.

The second approach, represented by Lakonishok, Schleifer and Vishny (1994), re-

gards value superiority as a consequence of a general preference for growth stocks and

the avoidance of value stocks. In theory, this forces down the price of, and raises the

return on, value stocks. To test this hypotheses, factors such as the book-to-price ratio,

earnings-to-price ratio, and past growth rate in sales are needed to differentiate glamour

portfolios from value portfolios. Using US data for the period 1963-90, value superiority
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persists across different capitalizations in terms of the average return per year, average

return over a five year period, compounded five-year return, and the average annual

size-adjusted return over a five year period. The differentiating factors are significant

in a regression model for average portfolio return. It is also noted that value strategies

are not inherently riskier, based on the positive excess mean return of value strategies

during recessions and major market downturns.1

The third approach, represented by Fama and French (1992, 1996, 1998) and Chen

and Zhang (1998), argues that value-investment strategies are inherently more risky than

other strategies. Contrary to De Bondt and Thaler (1985), Fama and French find that

US data do not support the CAPM in its original form. Using US data for the period

1962-90, Fama and French (1992) note that capitalization and book-to-price ratio (mean

return of a value portfolio minus mean return of a growth portfolio) are useful proxies for

risk which are not included in the CAPM. An augmented CAPM or multi-factor model

is found to explain asset pricing much more accurately; moreover, the risk premium on

a portfolio is explained by the broad market portfolio premium, the value premium and

a size premium.

Black (1993) and MacKinlay (1995) note that the value premium is sample specific

and this leads Fama and French (1998) to examine international experience based on

thirteen major financial markets for the period 1975-90 using the augmented CAPM.

Chen and Zhang (1998) also examine the behavior of value stocks in six financial markets

using the Fama-French (1996) framework. The findings of Fama and French (1998) are

confirmed.

Putting these results together, the risk premium on value stocks is measured, in the

Fama-French-Chen-Zhang stream, via the coefficients of the augmented CAPM, and in

the De Bondt-Thaler stream, as residuals from a standard CAPM. In the Lakonishok-

Schleifer-Vishny stream, mean portfolio returns (controlling for investment style and
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capitalization) are used, assuming that the premiums on broad market portfolio risk

and idiosyncratic risk are inherent parts of any investment style and capitalization.

In seeking to explain value superiority and the associated risk it seems natural to

begin with the motives for value investment. Graham (1973, pp. 53-62 and 277-287)

argues that a value investor is defensive, seeking a large margin of safety through se-

lective purchase of the stocks of large, prominent, conservatively financed corporations

at discounted prices. In economic theory, preferences leading to defensive behavior of

this kind were first characterized as loss averse [see Samuelson (1965), Kahneman and

Tversky (1979), Fishburn and Kochenberger (1979)]; later, with the addition of frequent

mental accounting for near-term losses, the characterization became known as myopic

loss aversion or MLA [see e.g Benartzi and Thaler (1995); Thaler, Tversky, Kahneman

and Schwartz (1997)]. A defensive investor has such strong aversion to losses that the

possibility of loss must be evaluated frequently, to ensure that long-term losses can be

avoided. A loss here is not necessarily an accounting loss but rather an outcome below

a certain reference point. Unfortunately, this implies that a shift in the reference point

can turn losses into gains and vice-versa [Tversky and Kahneman (1991)].

In this paper, a loss profile and a loss ranking are developed to characterize myopic

loss-averse investors and hence the performance of different portfolios. A suitable new

statistical procedure is described which allows different portfolios to be ranked in terms

of their losses.2 Then the statistical procedure is applied to BARRA value and growth

portfolios, to determine which portfolio, value or growth, is riskier to a defensive investor.

This approach differs from the existing approaches in that it permits the evaluation of

risk from a myopic loss point of view, without imposing any further restrictions on the

parametric form of the utility function and the underlying return generating process.

The remainder of the paper is organized as follows. In section 2, MLA is formally

characterized and a suitable test for it is developed. A detailed description of the

BARRA investment-style portfolios is provided in section 3. Application of the pro-
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posed test and the empirical results are discussed in section 4. Concluding remarks

appear in section 5.

2 Myopic Loss Aversion in a Statistical Framework

2.1 Myopic Loss Profiles and Loss Ordering

Loss aversion can be characterized in different ways. For example, Benartzi and Thaler

(1995) describe loss aversion with a utility function having two states: U(x) = x for

x ≥ 0 and U(x) = 2.5x for x < 0, where a loss is more heavily weighted than a gain and

yields negative utility against the positive utility of a gain. Samuelson (1965), however,

describes loss aversion literally as aversion to loss so that a loss is fully accommodated

while a gain is totally discounted.

When risky returns are compared and ranked on the probability and extent of losses,

the amount by which a return falls below some reference point would seem to be key to

how risk perspectives may be evaluated.3

Throughout the paper rX and rY denote portfolio returns generated from correspond-

ing distribution functions FrX
and FrY

. The corresponding quantile functions for rX and

rY , that is, the inverse marginal distributions, are given by QrX
and QrY

.4

A loss profile for random return rX relative to reference point r ∈ [a, b] is defined as

max(r − rX , 0). (1)

That is, the loss profile for random return rX takes the value (r − rX) if rX < r; 0

otherwise. This loss profile characterizes the losses of random return rX generated from

a marginal distribution function FrX
relative to the reference point r.5 The family of

5



loss indices Lθ(FrX
; r) represents the loss of degree θ (θ = 1, 2, . . . .) associated with

distribution FrX
relative to reference point r:

Lθ(FrX
; r) ≡

∫ FrX
(r)

0
[r − F−1

rX
(p)]θ−1dp. (2)

By a change of variable, this definition may also be expressed as

Lθ(FrX
; r) =

∫ r

a
[r − w]θ−1dFrX

(w). (3)

The family of loss indices in the form of Lθ(FrX
; r) includes some commonly used loss

indices, such as: the probability of loss (θ = 1),

L1(FrX
; r) =

∫ r

a
dFrX

(w) ≡ FrX
(r), (4)

which is the probability that asset returns are less than the reference point r and the

percentage loss (θ = 2),

L2(FrX
; r) ≡

∫ r

a
[r − w]dFrX

(w), (5)

which is the expected value of losses below the reference point r.

These indices can be used to rank loss profiles of various investment strategies to see

which is riskier. The loss ordering (Lθ) between FrX
and FrY

for a positive integer θ

and a reference point r ∈ [a, b] can be made by comparing Lθ(FrX
; r) with Lθ(FrY

; r).

FrX
unambiguously has less loss than FrY

relative to the loss index Lθ(F ; r) with the

reference point r ∈ [a, b], denoted by

FrX
LθFrY

, (6)

if Lθ(FrX
; r) ≤ Lθ(FrY

; r) for all r ∈ [a, b] with at least one strict inequality.
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The loss ordering criterion FrX
LθFrY

is consistent with stochastic dominance of de-

gree θ. An advantage of the latter is that there is no need to specify the reference point

r. Following Foster and Shorrocks (1988), define the distribution function FrX ,1 ≡ FrX

and the integrated distribution function of degree θ, FrX ,θ ≡
∫ w
a FrX ,θ−1(t)dt, recursively

for any integer θ ≥ 2. Let stochastic dominance of degree θ of rX over rY be FrX
DθFrY

:6

FrX
DθFrY

(7)

if FrX ,θ(w) ≤ FrY ,θ(w) for all w ∈ [a, b] with at least one strict inequality. With repeated

integration by parts, Lθ(FrX
; r) can be written as7

Lθ(FrX
; r) =

∫ r

a
(r − w)θ−1dFrX

(w) = (θ − 1)!FrX ,θ(r). (8)

A comparison of conditions (6) and (7) via equation (8) indicates that, for any positive

integer θ, rX dominates rY in loss ordering [FrX
LθFrY

] if and only if rX dominates rY

based on the corresponding stochastic dominance ordering [FrX
DθFrY

]. In other words,

the loss ordering Lθ is precisely the stochastic dominance ordering Dθ.

The next question is to specify the value of θ. It is then natural to consider second-

degree stochastic dominance (θ = 2) since this case includes both the probability of

loss and the percentage loss. If, for example, FrX
D2FrY

with rX being a value portfolio

return and rY a growth portfolio return, this would certainly be consistent with myopic

loss aversion for any reference point r.
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2.2 A Statistical Procedure

According to the general definition of stochastic dominance of degree θ given in (7), the

second-degree stochastic dominance relationship between rX and rY (FrX
D2FrY

) can be

established if

FrX ,2(w) ≤ FrY ,2(w) (9)

for all w ∈ [a, b] with at least one strict inequality. Let the integrated quantile function

of second-degree for rX and rY be QrX ,2(p) ≡
∫ p
0 QrX

(t)dt and QrY ,2(p) ≡
∫ p
0 QrY

(t)dt,

respectively, for p ∈ [0, 1]. The inequality (9) is equivalent to:

QrX ,2(p) ≥ QrY ,2(p) (10)

for all p ∈ [0, 1] with at least one strict inequality. Thus rX dominates rY in the second-

degree if either condition (9) or condition (10) is satisfied.8 In other words, if condition

(9) or condition (10) is satisfied, then FrX
D2FrY

, indicating FrX
L2FrY

, and hence that

the return on portfolio X, rX , outperforms (or has less loss than) the return on portfolio

Y , rY .

Condition (9) or condition (10) must be interpreted within a corresponding statistical

procedure in order to draw valid inferences. Since the choice between the two condi-

tions is primarily a matter of convenience, the statistical procedure based on integrated

quantile functions [condition (10)] is selected because it is conceptually simpler.9

Let rZ represent a random vector comprising the two random returns rX and rY .

Realizations of rZ are assumed to be generated by a strictly stationary alpha-mixing

process {zt} within which there are the two components {xt} and {yt}. The alpha-mixing

assumption is used to characterize dependence among observations which dies out as the

distance between them increases. Such dependence allows observations within each of

the two component sequences to be correlated, while also permitting corresponding finite

samples {xt} and {yt} to be associated.10 Typically, financial series demonstrate these
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two properties, which are quite distinct from independent samples of i.i.d. random

variables. Such i.i.d. random variables are presumed in all existing tests for stochastic

dominance [see, for example, Kaur, Rao and Singh (1994), Anderson (1996), Xu (1997),

Dardanoni and Forcina (1999), Davidson and Duclos (2000), Barrett and Donald (2003),

and Murasawa and Morimune (2004)], with the sole exception of Fisher, Willson, and

Xu (1998). The test used in the paper represents a generalization of the last citation to

alpha mixing.

The random vector rZ can be characterized by the bivariate distribution function

FrZ
which is absolutely continuous in each of its two components in the neighborhood

of any point in its support. FrZ
is presumed to admit of a differentiable continuous

density function frZ
which is positive and finite.11 The quantile function corresponding

to FrZ
is QrZ

and the 2K × 1 vector of quantiles at K suitably chosen abscissae P =

{pi : i = 1, 2, . . . , K; 0 < p1 < p2 < · · · < pK ≤ 1} is written

QrZ
(P ) =

[
QrX

(p1), QrX
(p2), . . . , QrX

(pK)
...QrY

(p1), QrY
(p2), . . . , QrY

(pK)
]′

=
[
QrX

(P )′
...QrY

(P )′
]′

.

Let {xt}T
t=1 and {yt}T

t=1 denote observations from rX and rY , respectively. The

observations can be arranged in ascending order x(1) ≤ x(2) ≤ · · · ≤ x(T ) to form a T × 1

vector x and y(1) ≤ y(2) ≤ · · · ≤ y(T ) to form a corresponding vector y. The sample

quantiles at any point p, 0 < p ≤ 1, for rX and rY are denoted Q̂rX
(p) = x([Tp]) and

Q̂rY
(p) = y([Tp]), [Tp] being the largest integer that is less than or equal to Tp.12

The empirical marginal distribution functions are denoted F̂rX
and F̂rY

, and these are

used to define mx([Tpi])
=
√

T
[
F̂rX

(QrX
(pi))− pi

]
and my([Tpi])

in a corresponding way.

Two K × 1 vectors mrX
and mrY

comprise elements mx([Tpi])
and my([Tpi])

respectively.

Putting these together yields

mrZ
=

[
m

′

rX

...m
′

rY

]′
.
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By the Yokoyama Central Limit Theorem (YCLT) for sample quantiles from an alpha-

mixing sequence [Yokoyama (1978)]:

lim
T→∞

E(mrZ
) = 0, lim

T→∞
E

(
mrZ

m
′

rZ

)
= V,

V being a 2K × 2K positive-definite matrix of finite elements, and, as T →∞,

√
T

[
Q̂rZ

(P )−QrZ
(P )

]
d→ N (0, Λ) (11)

in which Λ = D−1V (D′)−1 with

D = diag
[
frX

(QrX
(p1)) , . . . , frX

(QrX
(pK))

...frY
(QrY

(p1)) , . . . , frY
(QrY

(pK))
]
.

The complication with D−1 could have been avoided by working with
∫ w
a [FrY

(t) −

FrX
(t)]dt ≥ 0 ∀w ∈ [a, b]. However this is not a serious complication here since functions

of the elements of Λ are estimated directly by the moving-block bootstrap.

The integrated sample quantiles of second-degree are given by Q̂rX ,2(pi) = 1
T

∑ri
j=1 x(j)

and Q̂rY ,2(pi) = 1
T

∑ri
j=1 y(j) with ri = [Tpi].

13 For the K separate points of P , these are

written

Q̂rZ ,2(P ) = [Q̂rX ,2(P )′, Q̂rY ,2(P )′]′.

By the YCLT, integrated sample quantiles Q̂rZ ,2 are constant weighted sums of normal

variates, and hence, as T → ∞, will converge to a multivariate normal distribution,14

that is
√

T
[
Q̂rZ ,2(P )−QrZ ,2(P )

]
d→ N(0, Ω) (12)

where Ω is a positive-definite matrix of finite elements which are functions of the ele-

ments of Λ. This result facilitates the construction of a test-statistic for second-degree

stochastic dominance.
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The statistical procedure for ranking losses is developed as follows: Q̂rX ,2 − Q̂rY ,2 is

the difference between the estimated integrated quantile functions of rX and rY , which

has dispersion 1
T
HΩH ′, in which Ω is the dispersion in (12) and H = [IK

... − IK ]. To

construct the test-statistic, a consistent estimate 1
T
HΩ̂H ′ is required. The moving-block

bootstrap is used to provide a consistent estimate.15 If the null hypothesis that there

exists a weak dominance relationship of rX over rY , or H0: QrX ,2 −QrY ,2 ≥ 0, is tested

against the alternative hypothesis that there exists no weak dominance relationship

between the two returns, or Ha: QrX ,2−QrY ,2 6≥ 0,16 the test-statistic for second-degree

stochastic dominance c is defined as:

c = ∆′[
1

T
HΩ̂H ′]−1∆, (13)

In (13), ∆ = [(Q̂rX ,2 − Q̂rY ,2) − (Q̃rX ,2 − Q̃rY ,2)]; Q̂rX ,2, Q̂rY ,2, and Ω̂ are unrestricted

estimators while Q̃rX ,2 and Q̃rY ,2 are the restricted estimators under H0. The restricted

estimators are computed by minimizing

[(Q̂rX ,2 − Q̂rY ,2)− (QrX ,2 −QrY ,2)]
′[

1

T
HΩ̂H ′]−1[(Q̂rX ,2 − Q̂rY ,2)− (QrX ,2 −QrY ,2)]

s.t. (QrX ,2 −QrY ,2) ≥ 0.

The test-statistic c of equation (13) is asymptotically distributed as the weighted

sum of χ2-variates, known as the χ2-distribution [see, for example, Robertson, Wright

and Dykstra (1988) and Shapiro (1985, 1988)]. Upper and lower critical bounds for

testing inequality restrictions with the test-statistic c are provided by Kodde and Palm

(1986). These bounds are given by

αl =
1

2
Pr(χ2

1 ≥ ql), (14)
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and

αu =
1

2
Pr(χ2

K−1 ≥ qu) +
1

2
Pr(χ2

K ≥ qu), (15)

where ql and qu are the lower- and upper-bounds, respectively, for the critical values of

the test-statistic c. A lower-bound is obtained by choosing a significance level, α, and

setting degrees of freedom (df) equal to one. An upper-bound is obtained by choosing

the significance level, α, and setting df equal to K. Thus, decision rules based on

the statistic c depend on whether c exceeds the upper-bound or c is smaller than the

lower-bound within a procedure now to be described.17

Given the test is a test for weak dominance, to draw an inference for a strict dom-

inance relationship, we need a two-step procedure. First, H
(1)
0 : QrX ,2 − QrY ,2 ≥ 0 is

tested against H(1)
a : QrX ,2−QrY ,2 6≥ 0. The test-statistic for this is c(1). If c(1) < ql, then

H
(1)
0 is not rejected and this provides evidence that FrX

weakly dominates FrY
in the

second degree. Second, H
(2)
0 : QrY ,2−QrX ,2 ≥ 0 is tested against H(2)

a : QrY ,2−QrX ,2 6≥ 0

using the test-statistic c(2). If FrX
D2FrY

, then H
(2)
0 cannot be true. Hence, if c(2) > qu in

addition to c(1) < ql, then H
(1)
0 is not rejected while H

(2)
0 is and it can be concluded that

FrX
D2FrY

. However, if c(1) < ql and c(2) < ql, then no strict dominance relationship can

be established. The procedure for testing FrX
D2FrY

is directly applicable to testing for

FrY
D2FrX

. The decision rules for the tests are summarized in Table 1.

3 Investment-Style Portfolios and Indices

Barr Rosenburger, econometrician and former finance professor at the University of Cal-

ifornia, Berkeley, founded a firm which is now called BARRA in the 1970’s. BARRA has

grown into a worldwide consulting organization and since the 1970’s it has maintained

style portfolio indices for the United States and Canada. The monthly returns of these

indices are published monthly. Each index tracks the performance of a portfolio and

each portfolio is rebalanced semi-annually according to various style criteria in line with
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Fama and French (1992, 1996, 1998) and Sharpe (1988, 1992). The American indices

comprise large capitalization (large-cap or LC), medium capitalization (mid-cap or MC)

and small capitalization (small-cap or SC) index portfolios; for Canada there are only

two classes of portfolios: LC and SC. In total, therefore, there are six American style

indices: a value and a growth index for each of LC, MC and SC. For Canada there are

four indices: LC growth and value, SC growth and value. The American growth and

value indices are available as follows: LC from January 1975, MC from June 1991 and

SC from January 1994. The Canadian LC indices are available from January 1982; the

SC indices from July 1990. All indices used in the empirical work end in August 2000.

These financial series are suitable to answer the question—“Which is riskier, value or

growth?”—in the North American context.

The American LC growth and value indices are constructed by dividing the stocks

in the S&P 500 Index according to book-to-price ratios. The LC value index contains

approximately fifty percent of the S&P 500 stocks with the largest book-to-price ratios,

while the LC growth index consists of the other fifty percent of the S&P 500 stocks

with the lowest book-to-price ratios. Rebalancing takes place on January 1 and July

1 of each year, based on book-to-price ratios and market capitalizations at the close of

trading one month before (i.e., November 30 and May 31). To permit the indices to have

a timely influence on the composition of a mimicking portfolio, the newly rebalanced

indices become effective one month later. Similarly, the American MC (SC) growth and

value indices are constructed by dividing the stocks in the S&P MidCap 400 Index (the

S&P SmallCap 600 Index) into growth and value stocks based on book-to-price ratios.

The Canadian style indices are constructed similarly. BARRA divides the five hun-

dred largest capitalization stocks in the Canadian equity market into two mutually exclu-

sive groups: large-cap (the top two hundred) and small-cap stocks (the remaining three

hundred). Each group is then divided according to an overall weighted rank which com-

prises two-thirds of the book-to-price rank and one-third for the dividend yield rank.18
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The value index is then made up of the stocks of the highest overall rank up to a cut-off

point where the index is equal to fifty percent of the float capitalization of each group.19

The growth index is made up of the remaining stocks. The stocks covered by each index

are rebalanced on December 31 and June 30, based on the book-to-price ratio, dividend

yield and market capitalization at the close of trading. As with the American portfolios,

and for the same reason, the newly rebalanced indices become effective one month later

(i.e., July 31 and January 31). In addition, the indices are also adjusted each month to

reflect changes in the composition of the universe.20

Investing in a BARRA value portfolio is clearly an example of widely diversified

value investment with infrequent portfolio rebalancing; indeed since a BARRA value

portfolio requires continual re-investment in the lower segment of the market for any

given capitalization, it is arguable that downside risk has been minimized while the

corresponding diversification has been made as wide as possible. Thus riskiness can

be evaluated by comparing the performance of the BARRA value portfolio relative to

the corresponding growth portfolio, on the basis of myopic loss aversion. Although

established methods (such as Sharpe’s index, Treynor’s performance index or Jensen’s

excess returns) may be used to rank assets, these methods are generally based on the

first two moments of asset-return distributions which are assumed to be independently

and identically normal. As shown later in the paper, these assumptions are unrealistic

for the financial data of this paper; in particular, the first two moments do not provide

sufficient information on loss ranking.

Each style index measures a monthly total return, that is, the return, in terms

of dividends and capital gains or losses, to the market value of each portfolio at the

beginning of the period. By definition, the value portfolio comprises undervalued stocks

and the growth portfolio comprises growth stocks which have relatively high prices.

Of course, overvaluation and undervaluation cannot generally persist for each and every

stock. Market activity will ensure that the prices of some undervalued stocks will rise and
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that of some overvalued stocks will fall, relative to their true underlying value. Insofar

as such movements take place, some value stocks will be reclassified as growth stocks,

and some growth stocks as value stocks. Moreover, when the former constitute capital

gains, these will add to the return on the value portfolio; when the latter constitute

capital losses, these reduce the return on the growth portfolio.

4 Empirical Results

4.1 Background Description

The time periods covered by the growth and value indices of different markets and

different capitalizations are shown in Table 2. From 1997 onwards, North American

economies have experienced considerable technological change and financial markets have

revealed substantial growth stock pricing bubbles. During this period, value-investment

strategies seem to have been overshadowed by a euphoria for new technologies and

their concomitant fast-growing growth stocks. Of course, the sample period to be used

for evaluating value-investment strategies goes back further than 1997, as indicated in

Table 2.

In Table 3, the American LC, MC and SC growth portfolios are revealed to have

higher mean returns and higher standard deviations than the corresponding value port-

folios. The returns of the American LC growth and value portfolios have large positive

kurtosis, while the remaining American portfolios are smaller in this respect. If mini-

mum return is taken as a measure of downside risk, then this appears to be smaller for

each of the American value portfolios than it is for each corresponding growth portfolio.

A somewhat different picture emerges from Table 4 for the Canadian market. The

Canadian LC value portfolio has a higher mean and lower standard deviation than the

corresponding growth portfolio. The return on the Canadian LC growth portfolio has
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larger kurtosis than its value counterpart while this position is reversed for the SC

portfolios. Using minimum return, downside risk is larger for LC growth than for LC

value; and larger for SC value than for SC growth.

Using the first two moments and the minimum return is, at best, an inexact measure

of downside risk, especially since, in Table 5, the Jarque-Bera tests reveal that none

of the return distributions is normal. In addition, returns are positively correlated

between corresponding samples (Table 6) and there is some, albeit weak, evidence that

observations within a sample are weakly autocorrelated (see for example, Tables 7–8).

The correlations are higher between within-country indices than between cross-country

series, reflecting the fact that, while returns in financial markets are generally correlated,

they are less correlated than returns within an economy. Non-normality, association

between samples and weak dependence within a sample of returns are accommodated

by the new statistical procedures described in section 2.

It is recognized that growth and value portfolios may perform differently at different

stages of a market cycle within a given market regime. From the end of 1997 onward,

North American economies have experienced technological change sufficient to induce

in financial markets a euphoria for exceptional growth stocks and hence growth-stock

pricing bubbles and depressed value stock prices. This mirrors quite closely the flat

stock performance of Berkshire Hathaway Inc., one of the best known value-investment

holding companies.

4.2 Myopic Loss Ranking Results

Following the background discussion in section 4.1, two sets of myopic loss ranking results

are considered: (1) the whole of each sample from the beginning of the portfolio until

August 2000; and (2) a subsample of each sample from the beginning of a portfolio until

December 1997. The myopic loss ranking is designed to answer the following questions:
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Is a value-investment strategy riskier than the corresponding growth-investment strategy

within each country? Moreover, will the answer to this question change, if the sample

period includes the period December 1997–August 2000?

The differences in integrated quantiles for the American data are estimated and

graphed in Figures 1–6. When the solid line (the estimated differences of integrated

quantiles) is above the dotted line (the indifference line) in the figures, then the value

portfolio is dominating (but not necessarily significantly dominating) the growth port-

folio during the period examined. A dominance relationship appears to exist between

the US LC value and growth portfolios during 1975.01–1997.12 (see Figure 2), between

the US MC value and growth portfolios (see Figure 4), and between the US SC value

and growth portfolios during both 1994.01–2000.08 and 1994.01–1997.12 (see Figures 5

and 6). But when the period extends to include 1998-2000, the dominance relationship

disappears between the US LC value and growth portfolios during 1975.01–2000.08 and

between the US MC value and growth portfolios during 1991.06–2000.08 (see Figures 1

and 3). In these cases, some, but not all, differences in estimated integrated quantiles

are negative.

The differences in estimated integrated quantiles for the Canadian data can be

graphed similarly. Dominance appears to exist between the Canadian LC value and

growth portfolios during both 1982.01–2000.08 and 1982.01–1997.12. In these cases, all

of the differences in estimated integrated quantiles are positive. The same does not

hold for the Canadian SC value and growth portfolios during both 1990.07–2000.08 and

1990.07–1997.12. In these cases, some, not all, of the differences are negative.

The observed differences shown in the figures are based on the sample estimates. To

evaluate the statistical significance of the differences and, therefore, to draw valid infer-

ences, the statistical procedure described in the paper is applied. The results are given

in Tables 9 and 10.21 At the 5% significance level, the lower- and upper-bounds of the

critical value of the test-statistic are 2.706 and 17.670, respectively; at the 10% signifi-
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cance level, the critical values are 1.642 and 15.337. When the value of the test-statistic

is between the lower- and upper-bounds, the p-value is computed based on simulations.22

When the value of the test-statistic is less than (greater than) the lower(upper)-bound of

the critical value for a chosen significance level, the weak dominance relationship under

the null hypothesis cannot (can) be rejected. When the value of the test-statistic is

greater than the lower-bound and less than the upper-bound, the decision is made by

comparing the p-value with the chosen significance level, say 10%. If the p is greater than

10%, then a weak dominance relationship under the null hypothesis is not rejected; oth-

erwise, the null hypothesis is rejected. A weak dominance relationship in one direction

but not in the other implies a strict dominance relationship in the one.

The results in Table 9 show that the American LC value portfolio does not strictly

dominate its growth counterpart during 1991.06–1997.12 because neither LC value weakly

dominates LC growth nor LC growth weakly dominates LC value at the 10% signifi-

cance level (the p-value is 0.2644). The test result indicates that the difference in loss

risk between two styles is not statistically significant. The American MC value portfo-

lio strictly dominates its growth counterpart during 1991.06–1997.12 because MC value

weakly dominates MC growth but MC growth does not weakly dominate MC value at the

10% significance level (the p-value is 0.0625). The American SC value portfolio strictly

dominates SC growth during 1994.01–1997.12 because SC value weakly dominates SC

growth but the opposite is not statistically significant at the 10% level (the p-value is

0.0828). As soon as the sample period is extended to 2000.08, no strict dominance rela-

tionship exists for all cases. These results show that generally the American MC and SC

value portfolios are less risky, in terms of downside risk, than the corresponding growth

counterparts. But in the period in which there were growth stock pricing bubbles, value

strategies were as risky as growth strategies.

The results in Table 10 show that only the Canadian LC value portfolio strictly

dominates the LC growth portfolio during 1982.01–1997.12 because the Canadian LC
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value weakly dominates LC growth counterpart but the opposite is not statistically

significant at the 10% level (the p-value is 0.0676). However, no such strict dominance

relationship exists for SC cases or for both LC and SC cases when the data of 1998.01-

2002.08 are added to the sample. These results indicate that the period 1998.01–2000.08

is one in which value portfolios did not offer as large a margin of safety as growth

portfolios.

In order to appreciate the different results across the United States and Canada, it

is useful to compare different capitalizations in the two markets. In the United States,

SC stocks generally refer the stocks with capitalizations of US $ 250 million – US $ 1

billion, MC stocks US $ 1 billion – US $ 5 billion, and LC stocks US $ 5 billion or more.

The capitalization range for American stocks is set between US $ 250 million and US $

5 billion and beyond. In Canada, this range is set much lower; that is, from less than

CN $ 100 million to CN $ 1 billion and beyond. Canadian LC stocks generally refer

to stocks with capitalization of CN $ 1 billion or more and they are considered MC

stock equivalents in the United States. Any capitalizations less than CN $ 1 billion are

considered SC stocks in Canada. In the Canadian SC category, some Canadian stocks

are truly American SC equivalents while others are smaller capitalization stocks. This

may explain why American MC and SC value portfolios and Canadian LC, not SC, value

portfolio are less risky than their growth counterparts.

Evidently the research reported here demonstrates that both value and growth strate-

gies can be risky. For much of the past considered here, MC and SC value strategies in

the United States and LC value strategy in Canada appear to offer a larger margin of

safety and hence are less risky than their growth counterparts in terms of downside risk.

This conclusion is robust across countries but not entirely robust over time.
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5 Concluding Remarks

This paper has examined the risk of value investment in relation to the risk of growth

investment by considering a myopic loss-averse investor who holds a widely diversified

portfolio, relies on infrequent portfolio rebalancing and seeks a large margin of safety.

This type of investor has been characterized by way of a well-defined loss profile which has

been shown to engender a loss ranking; that is, a means by which alternative portfolios

may be ranked according to their losses. Losses have been interpreted as returns on

the low side of a cut-off point of the returns distribution. Since the cut-off point is

impossible to estimate, returns have been considered below every possible cut-off point.

This approach is quite new and differs markedly from conventional approaches which

focus either on the first two moments of the returns distribution, or on the value risk

premium in an augmented CAPM in which proper allowance has been made for broad

market risk.

Within this general background, the achievements of the paper may be summarized

as follows:

1. The loss profile (and hence the loss ranking) has been developed to characterize the

class of myopic loss-averse (or MLA) investors and thereby the performance of

different portfolios. This approach is undoubtedly novel and permits an evalua-

tion of risk from an MLA viewpoint, without imposing further restrictions on the

parametric form of the utility function or the return generating process.

2. The loss profile has been shown, for every cut-off point, to be equivalent to second-

degree stochastic dominance. This result, which is ironically borrowed from poverty

analysis, is nevertheless applicable to the analysis of financial data.

3. A suitable new statistical procedure has been developed which allows two different,

but related, portfolios to be ranked (within a given level of significance) according

to their losses. The new procedure has two specific features:
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(i) Most importantly, it is not restricted to independent samples of i.i.d. data but

permits application to weakly dependent data in two associated samples. To

our knowledge, no other test for second-degree stochastic dominance has yet

been developed for this class of data. Such data are common in finance and

so this feature represents a notable step forward.

(ii) The statistical procedure does not specify the null hypothesis as one of equal-

ity, since rejection leaves open whether second-degree stochastic dominance

has been established. Rather, it formulates second-degree stochastic domi-

nance as an inequality to be tested under the null hypothesis. This formu-

lation follows the same path as Fisher, Willson, and Xu (1998) which is also

used by Dardanoni and Forcina (1999) and, more recently, Murasawa and

Morimune (2004).

4. The statistical procedure has been applied to data which manifestly exhibit the fea-

tures summarized in 3(i) above and is used to determine whether value portfolios

are more risky (according to downside risk) than corresponding growth portfolios,

across economies and over time. During the period 1998.01–2000.08, value invest-

ment has been found to be no more risky than growth investment; but during the

period ending 1997.12 value investment in the US, for medium and small capital-

ization portfolios, was less risky than corresponding growth investment. A similar

result holds for the large capitalization value and growth portfolios in Canada for

the same period.
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Notes

1Lakonishok, Schleifer and Vishny (1994) and Dichev (1999) also demonstrate re-

spectively that fundamental and bankruptcy risk cannot fully explain the higher returns

on value stocks. Similarly, Anderson, Korsun and Murrell (2003) use non-market data

from a privatization program to reveal that risk cannot fully explain the higher returns

on value stocks.

2This statistical procedure has two special features. The first feature is that the

test is not limited to independent samples of independently and identically distributed

data, as in McFadden (1989), Klecan, McFadden and McFadden (1991), Kaur, Rao and

Singh (1994), Anderson (1996), Xu (1997), Davidson and Duclos (2000), Barrett and

Donald (2003) and Murasawa and Morimune (2004), but permits application to weakly

dependent data in associated samples. This is achieved by extending Fisher, Willson

and Xu (1998) to data generated by alpha-mixing and then making use of a little-known

central limit theorem to find the distribution of the test statistic. The second feature is

that the new test has an appropriate null hypothesis. Unlike Tolley and Pope (1988),

McFadden (1989) and Anderson (1996), it does not use a null hypothesis of equality

since then rejection leaves open whether stochastic dominance has been established [see

Levy (1992, p. 547)]; rather the test formulates stochastic dominance as an inequality

to be established [see Xu (1994), Fisher, Willson, and Xu (1998), and Dardanoni and

Forcina (1999)].

3The ordering of loss profiles based on a loss index corresponds precisely to the

ordering of loss profiles based on stochastic dominance. Xu and Osberg (1998) address

a similar problem in a different context. Our discussion is also very much influenced by

Benartzi and Thaler (1995) and Foster, Greer, and Thobecke (1984).

4Let F (w) = p, 0 ≤ p ≤ 1 when w ∈ [a, b], −∞ < a < b < ∞. If F is strictly

monotonic, the inverse function of F is given by w = F−1(p) = Q(p); thus Q(p) is
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given by Pr[w ≤ Q(p)] = p. If the distribution function is weakly monotonic, then

Q(p) = inf{w : F (w) ≥ p, 0 ≤ p ≤ 1}.

5This is similar to the value at risk and can be referred to as the “return” at risk.

6Note that, for income distributions, Foster and Shorrocks (1988) require w > 0.

Fishburn (1976) requires w ∈ [0, b] where b ∈ R+. O’Brien (1984) requires w ∈ R.

7This result is attributed to Riemann and Liouville [see Zygmund (1959, p. 133)].

8See Hadar and Russell (1969), Hanoch and Levy (1969), Rothschild and Stiglitz

(1970), and Bawa (1975) for definitions based on distribution functions, and Levy and

Kroll (1978) for the definitions based on quantile functions.

9The domain of the integrated quantile functions for both random variables being

compared is the interval [0, 1], while the domains of the integrated distribution functions

are case-specific and are generally not the same; this increases the possibility of ‘sampling

zeros’ in tests based on sample proportions.

10See, for example, Bierens (1994) and Davidson (1994).

11This allows for a convenient representation for the limiting variance-covariance ma-

trix of the sample quantiles, and could be relaxed, although at the cost of additional

complexity [see Serfling (1980)].

12If S represents a T ×K selection matrix with unity in the [Tpi]th position of column

i, i = 1, 2, . . . , K, zeros elsewhere, then Q̂rX
(P ) = [x([Tp1]), x([Tp2]), . . . , x([TpK ])]

′ = S ′x,

and Q̂rY
(P ) = [y([Tp1]), y([Tp2]), . . . , y([TpK ])]

′ = S ′y, and the 2K × 1 vector of sample

quantiles is Q̂rZ
(P ) = [Q̂rX

(P )′, Q̂rY
(P )′]′ = [I2 ⊗ S ′]

[
x′

...y′
]′

.

13These estimators may be constructed by noting that

QrX ,2(pi) =
∫ pi

0
QrX

(t)dt,
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=
∫ QrX

(pi)

0
wdFrX

(w),

= FrX
(QrX

(pi))
∫ QrX

(pi)

0

wdFrX
(w)

FrX
(QrX

(pi))
.

Thus Q̂rX ,2(pi) = pi

ri

∑ri
j=1 x(j). Since [Tpi] = ri, Q̂rX ,2(pi) = 1

T

∑ri
j=1 x(j). A correspond-

ing argument applies to Q̂rY ,2(pi).

14As indicated in footnote 12, Q̂rX
(P ) = S ′x and Q̂rY

(P ) = S ′y, which together form

Q̂rZ
(P ). The matrix S here is conveniently defined: (i) to be representative of the range

of x and y, and (ii) to ensure that the sample quantiles Q̂rX
and Q̂rY

provide good

representations of the true quantile functions QrX
and QrY

. Nevertheless, S may be

varied to form different sets of quantiles, so long as each variant admits of requirements

(i) and (ii) above. Indeed the observations z =
[
x′

...y′
]′

may themselves be viewed as

selected quantiles from larger corresponding samples from rX and rY , and hence as

having, by the YCLT, a multivariate normal distribution in a sense analogous to (11).

15See Kunsch (1989) and Liu and Singh (1992).

16Xu, (1994), Xu (1997), Fisher, Willson and Xu (1998), and Xu and Osberg (1998)

proposed and used the same form of hypotheses for stochastic dominance; this is referred

to as the “Wolak procedure” in Davidson and Duclos (2000).

17As Wolak (1991) points out for nonlinear one-sided tests, if the least favorable

parameter value does not satisfy the null hypothesis with equality, the test may have

incorrect asymptotic size. The practical implication of this is that the upper- and lower-

bounds will be valid slack bounds, and can still be used to draw asymptotically valid

inferences.

18Dino Mastroianni, Equity Consultant, at BARRA International Canada explains

BARRA’s construction method as follows: the stock with the highest book-to-price

ratio is ranked number one; the same rule applies to the dividend yield; and the weighted
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average of rankings is used to divide the universe into the value and growth stocks. The

method of constructing indices has several advantages: (i) the book-to-price ratio and

the dividend yield are easy to measure and understand, and are useful for capturing the

distinction between value and growth; and (ii) the book-to-price ratio and dividend yield

are relatively stable compared with other selection criteria such as the price-earnings

ratio, and hence are desirable for constructing indices.

19The cut-off point is based on the market value of capitalization, and hence varies

over time.

20In general, stocks in an index are not removed from that index unless they cease to

exist or until they are displaced through rebalancing. According to BARRA, a buffer

has been created to prevent stocks from bouncing continually between the large- and

small-cap subsets. The buffer comprises stocks of basically two types. First, any small-

cap stock cannot join the large-cap universe unless it crosses a threshold of 120 percent

of the capitalization of the smallest stock of the large-cap universe. Second, all multiple

class stocks of large-cap companies go into the buffer.

21These are computed using the moving-block bootstrap method of 500 iterations

with block size 24. These figures represent respectively a sufficient number of iterations

and a sufficiently long time-dependence structure to yield reliable estimates. Ten inte-

grated quantiles with common abscissae are used to evaluate differences in the return

distributions.

22The simulation is based on 1,000 iterations; this is sufficiently large to be reliable.
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Table 1: Decision Rules for Strict Dominance

Second test for First test for H
(1)
0 vs H(1)

a

H
(2)
0 vs H(2)

a c(1) < ql c(1) > qu

c(2) < ql No dominance established FrY
D2FrX

c(2) > qu FrX
D2FrY

No dominance established

Table 2: Sample Size of the Growth and Value Indices by Markets and Capitalization

Capitalization American Market Canadian Market
LC January 1975—August 2000 January 1982—August 2000

308 observations 224 observations
MC June 1991—August 2000 Not available

111 observations
SC January 1994—August 2000 July 1990—August 2000

80 observations 122 observations

Note: LC, MC and SC refer to large, mid and small capitalization, respectively.

Table 3: Basic Statistics of the Return Series of American Investment Style Indices

Index Mean Std. Dev. Skewness Kurtosis Minimum Maximum
LC Growth 1.1262 4.0448 -.4095 4.4116 -22.710 14.090
LC Value 1.0290 3.6508 -.4390 5.6146 -20.320 13.620
MC Growth 1.8019 5.6594 .0702 2.1870 -20.808 19.560
MC Value 1.3100 4.0000 -.4334 3.4454 -16.378 15.302
SC Growth 1.2201 6.1579 .1518 3.3026 -20.517 20.855
SC Value 1.1840 4.3659 -.0980 1.8890 -18.038 9.5300

Note: (1) Kurtosis refers to excess kurtosis. (2) LC, MC, and SC data cover
January 1975—August 2000 (308 observations), June 1991—August 2000 (111
observations), and January 1994—August 2000(80 observations), respectively.
(3) Using mean and standard deviation as the basis for comparison, the value
stocks did not outperform their growth counterparts. (4) The LC, MC, and SC
value returns have smaller minima than their growth counterparts.
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Table 4: Basic Statistics of the Return Series of Canadian Investment Style Indices

Index Return Std. Dev. Skewness Kurtosis Minimum Maximum
LC Growth 1.0262 5.1697 -.6437 4.5330 -26.180 17.170
LC Value 1.1251 4.3714 -.6439 3.1233 -18.710 14.470
SC Growth 1.3789 5.8323 .2877 3.7686 -19.890 27.680
SC Value .8010 4.0358 -.9773 7.4201 -21.380 14.990

Note: (1) Kurtosis refers to excess kurtosis. (2) LC and SC data cover January
1982—August 2000 (224 observations) and July 1990—August 2000 (122 obser-
vations), respectively. (3) Using mean and standard deviation as the basis for
comparison, the large cap value stocks outperformed their growth counterparts
while the small cap value stocks did not. (4) The LC value returns have a smaller
minimum than LC growth.

Table 5: Jarque-Bera Asymptotic LM Test for Normality for Investment Style Index
Returns

Country LC Growth LC Value MC Growth MC Value SC Growth SC Value
US 248.1188 398.6301 19.2636 51.8897 9.7445 61.4371
Canada 196.4325 100.8090 NA NA 66.3260 273.0825

Note: (1) The complete data sets are used for all returns. (2) The 5 percent and 10
percent critical values are 5.9915 and 4.6052, respectively. NA (Not Available) refers
the fact that no data are available for the test.
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Table 6: Correlation Matrix of the Return Series of American and Canadian Investment
Style Indices

(1) (2) (3) (4) (5) (6) (7) (8)
(1) US LC Growth 1.00
(2) US LC Value .76 1.00
(3) US MC Growth .78 .66 1.00
(4) US MC Value .65 .90 .70 1.00
(5) Can. LC Growth .60 .52 .73 .49 1.00
(6) Can. LC Value .57 .75 .53 .69 .66 1.00
(7) Can. SC Growth .26 .27 .56 .29 .77 .42 1.00
(8) Can. SC Value .36 .55 .51 .56 .69 .74 .67 1.00

Note: The statistics are computed based on data from June 1991 to August
2000 (111 observations). These index returns are all positively but not
perfectly correlated. The within-country correlation coefficients tend to
be much higher than the cross-country correlation coefficients.
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Table 7: Autocorrelation Functions of the Return Series of the American LC Growth
Style Index

Lags
1–12 .00 .00 .00 .00 .00 .01 -.01 .00 .00 .00 .00 -.01

13–24 -.02 .05 -.04 -.05 .08 -.02 -.05 .08 .01 -.02 -.06 .08
25–36 .05 .07 .02 .02 .09 -.02 .00 -.05 .05 .01 .11 -.06
37–48 .01 .00 -.08 .02 .01 .08 .02 -.01 .01 .00 -.01 .00
49–60 .04 .05 .07 .00 .08 .00 -.05 -.09 .03 -.02 .00 -.10

Note: (1) The standard error for lags 1–60 is .06. (2) The numbers in bold font
are greater than or equal to one standard error. (3) The autocorrelation functions
indicate some weak dependence.

Table 8: Autocorrelation Functions of the Return Series of the American LC Value
Style Index

Lags
1–12 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 -.01 -.01

13–24 .02 -.02 -.05 .04 .04 .02 -.07 -.02 -.05 .07 -.03 .11
25–36 .11 .06 .03 .05 .05 -.03 -.03 -.04 -.01 .05 .08 .00
37–48 -.03 -.02 -.08 .02 .01 .05 .01 -.02 .06 .00 .02 .03
49–60 .03 .02 .05 .00 .06 -.06 -.09 -.04 .03 -.05 .01 -.04

Note: (1) The standard error for lags 1–60 is 0.6. (2) The numbers in bold font
are greater than or equal to one standard error. (3) The autocorrelation functions
indicate some weak dependence.
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Table 9: Dominance Tests for American Investment Style Index Returns

Sample Period Dominance Relationship Test p-Value
1975.01–2000.08 LC Growth dominates LC Value 1.9501 0.4091
1975.01–2000.08 LC Value dominates LC Growth .0000
1975.01–1997.12 LC Growth dominates LC Value 3.1662 0.2644
1975.01–1997.12 LC Value dominates LC Growth .0000
1991.06–2000.08 MC Growth dominates MC Value 1.7858 0.4407
1991.06–2000.08 MC Value dominates MC Growth .0000
1991.06–1997.12 MC Growth dominates MC Value 6.3922 0.0625
1991.06–1997.12 MC Value dominates MC Growth .0000
1994.01–2000.08 SC Growth dominates SC Value 4.5951 0.1287
1994.01–2000.08 SC Value dominates SC Growth .0000
1994.01–1997.12 SC Growth dominates SC Value 5.3472 0.0828
1994.01–1997.12 SC Value dominates SC Growth .0000

Note: (1) At the 5% significance level, the lower and upper bounds of
the critical value of the test statistic are 2.706 and 17.670, respectively;
at the 10% significance level, these are 1.642 and 15.337 [see Kodde and
Palm (1986)]. (2) When the value of the test statistic is between the
lower and upper bounds, the p-value is computed based on simulations.
(3) When the value of the test statistic is less than (greater than) the
lower (upper) bound of the critical value for a chosen significance level,
the dominance relationship under the null hypothesis cannot (can) be
rejected. When the value of the test statistic is greater than the lower
bound and less than the upper bound, the decision is made by com-
paring the p-value with the chosen significance level, say 10%. If the
p is greater than 10%, the dominance relationship under the null hy-
pothesis is not rejected; otherwise, the relation is rejected. (4) A weak
dominance relationship exists in one direction but not in the other im-
plies a strict dominance relationship. (5) The results in this table show
that during 1991.06–1997.12, US MC and SC value portfolios strictly
dominate their growth counterparts.
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Table 10: Dominance Tests for Canadian Investment Style Index Returns

Sample Period Dominance Relationship Test p-Value
1982.01–2000.08 LC Growth dominates LC Value 4.1474 0.1784
1982.01–2000.08 LC Value dominates LC Growth .0000
1982.01–1997.12 LC Growth dominates LC Value 6.2470 0.0676
1982.01–1997.12 LC Value dominates LC Growth .0000
1990.07–2000.08 SC Growth dominates SC Value 1.8171 0.4427
1990.07–2000.08 SC Value dominates SC Growth .3260
1990.07–1997.12 SC Growth dominates SC Value 1.7904 0.4497
1990.07–1997.12 SC Value dominates SC Growth .0031

Note: (1) At the 5% significance level, the lower and upper bounds of
the critical value of the test statistic are 2.706 and 17.670, respectively;
at the 10% significance level, these are 1.642 and 15.337 [see Kodde
and Palm (1986)]. (2) When the value of the test statistic is between
the lower and upper bounds, the p-value is computed based on simu-
lations. (3) When the value of the test statistic is less than (greater
than) the lower (upper) bound of the critical value for a chosen sig-
nificance level, the dominance relationship under the null hypothesis
cannot (can) be rejected. When the value of the test statistic is greater
than the lower bound and less than the upper bound, the decision is
made by comparing the p-value with the chosen significance level, say
10%. If the p is greater than 10%, the dominance relationship under
the null hypothesis is not rejected; otherwise, the relation is rejected.
(4) A weak dominance relationship exists in one direction but not in
the other implies a strict dominance relationship. (5) The results in
this table show that during 1982.01–1997.12, the Canadian LC value
portfolio strictly dominates its growth counterpart.
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Figure 1: Difference in Empirical Cumulative Quantiles of the American LC Value and
Growth Index Returns: 1975.01–2000.08
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Figure 2: Difference in Empirical Cumulative Quantiles of the American LC Value and
Growth Index Returns: 1975.01–1997.12
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Figure 3: Difference in Empirical Cumulative Quantiles of the American MC Value and
Growth Index Returns: 1991.06–2000.08
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Figure 4: Difference in Empirical Cumulative Quantiles of the American MC Value and
Growth Index Returns: 1991.06–1997.12
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Figure 5: Difference in Empirical Cumulative Quantiles of the American SC Value and
Growth Index Returns: 1994.01–2000.08
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Figure 6: Difference in Empirical Cumulative Quantiles of the American SC Value and
Growth Index Returns: 1994.01–1997.12
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