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Abstract

U-statistics form a general class of statistics which have certain

important features in common. This class arises as a generalization of

the sample mean and the sample variance and typically members of the

class are asymptotically normal with good consistency properties. The

class encompasses some widely-used income inequality and poverty

measures, in particular the variance, the Gini index, the poverty rate,

1



average poverty gap ratios, the Foster-Greer-Thorbecke index, the Sen

index and its modified form. This paper illustrates how these measures

come together within the class of U-statistics, and thereby why U-

statistics are useful in econometrics.
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1 Introduction

Sound income inequality and poverty measures and reliable statistical proce-

dures have become increasingly important in policy making. When economists

measure income inequality or poverty on the basis of sample data, they need

to select appropriate statistical methods for each chosen measure. There

are generally two broad categories of methods in the literature: asymptotic-

theory-based and simulation-based methods.

In the first category, various methods have been proposed. Halmos (1946)

initiated the discussion of U-statistics. Hoeffding (1948) generalized the re-

sults of U-statistics and, based on this class, discussed the Gini index as a

function of U-statistics. This approach was revived by Glasser (1962) and

Gastwirth (1972) for both the Gini index and Lorenz curves. Then, Gail and

Gastwirth (1978) and Sandstrom, Wretman, and Walden (1988) considered

statistical inference for the Gini index along similar lines.1 More recently, U-

statistics have been used primarily for the Sen index of poverty intensity and

its various extensions by Bishop, Formby and Zheng (1997, 1998, 2001), and

Zheng, Formby, Smith and Chow (2000).2 Obviously, this approach can be

further extended. As noted by Xu and Osberg (2002), the Sen and modified

Sen indices of poverty intensity share a similar mathematical structure, which

ensures that U-statistics are applicable to the modified Sen index within a

1Along somewhat different paths, Nyg̊ard and Sandström (1981) and Aaberge (1982)
discussed the issues of statistical inference for the Gini index. For example, Nyg̊ard and
Sandström (1981) used the approach of Sendler (1979).

2Differing from the approach of Bishop, Chakraborti, and Thistle (1990), the use of
U-statistics avoids the need to employ a finite number of quantiles or order statistics to
compute income inequality and poverty measures.
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more general framework.3

In the second category of methods, statistical inference is made on the

basis of simulation. Yitzhaki (1991) and Karagiannis and Kovacivic (2000)

propose the jackknife for the Gini index. Xu (1998) and Osberg and Xu

(2000) advocate the bootstrap for the modified Sen index of poverty inten-

sity and its components. Biewen (2002) provides a comprehensive review

on the bootstrap for the family of generalized entropy measures, Atkinson

indices, the coefficient of variation, the logarithmic variance, Kolm indices,

Maasoumi-Zandvakili-Shorrocks mobility indices, Prais mobility indices, and

the Foster-Greer-Thorbecke poverty index. While Biewen does not consider

the Gini index and the Sen and modified Sen indices, he does mention the

usefulness of U-statistics for the Gini index.4

Can U-statistics be used for all of these widely-used income inequality

and poverty measures? This paper shows that U-statistics can be applied to

the variance, the Gini index, the poverty rate, mean poverty gap ratios, the

Foster-Greer-Thorbecke (FGT) index, the Sen index, and the modified Sen

index. This generalization is achieved because the sample counterparts of

these inequality and poverty measures can be expressed either as U-statistics

themselves or as functions of U-statistics.5 Within the framework of U-

statistics, this paper therefore provides the suitable estimators for these im-

portant income inequality and poverty measures and develops the asymptotic

3Anderson (2004) notes that some statistical procedures with point-wise estimation
and comparison of underlying distributions are biased. This observation further justifies
the use of U-statistics.

4Ogwang (2000, 2004) proposes a simplified approach for the Gini index based on the
jackknife.

5 Within this broader category, it should be noted that a number of authors propose
simplified methods for computing the Gini index [see Giles (2004)].
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distributions for these estimators.

The remainder of the paper is organized as follows. Section 2 introduces

the basic notation and definitions of various inequality and poverty measures.

Section 3 explains U-statistics and their application to these measures. Fi-

nally, concluding remarks are given in Section 4.

2 Inequality and Poverty Measures

Let Fy and fy be the probability distribution function and probability density

function, respectively, for income y with the support [0, +∞).6 Let 0 < z <

+∞ be the poverty line. Let the indicator function be: I(A) = 1 if A is true;

I(A) = 0 otherwise. The poverty gap ratio of the population is defined as

x =

(
z − y

z

)
I(y < z). (1)

The poverty gap ratio of the non-poor is zero. The poverty gap ratio of the

poor is therefore xp = {x|0 < x ≤ 1}.

The variance and the Gini index are the simplest measures of income

inequality.7 The variance is defined as

σ2
y =

∫ +∞

0

(
y − µy

)2
dFy(y) (2)

6Both Fy and fy can accommodate either discrete distributions, or continuous distri-
butions or a combination of the two.

7The variance of logarithms is another inequality measure, the estimator of which can
be viewed as a U-statistic. But this measure is not desirable, as pointed by Sen (1973),
because it violates the principle of transfer. Foster and Ok (1999) also find that the
variance of logarithms is not only inconsistent with the Lorenz dominance criterion but is
also capable of making very serious errors.
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where µy =
∫ +∞

0
ydFy(y) is the mean of income y. This measure possesses

good theoretical properties—absolute inequality invariance, symmetry, the

principle of the transfers, the principle of population, and subgroup decom-

posability [see Chakravarty (2001a, 2001b)] and, hence, is used widely [see

Sen (1973) and Chakravarty (1990)].

The Gini index, which is defined in equation (5) below, is probably the

most widely-used measure of income inequality. This measure can be defined

in various ways [see Yitzhaki(1998) and Xu (2003)]. The relative mean dif-

ference approach links the Gini index directly to U-statistics [see Hoeffding

(1948)] while the normative approach links the Gini index directly to the Sen

and modified Sen indices [Xu and Osberg (2002)].

The absolute mean difference is defined as the mean difference between

any two variates of the same distribution function Fy:

∆y = E|yi − yj| (3)

where E is the mathematical expectation operator and yi and yj are the

variates from the same distribution Fy. The relative mean difference is the

mean-scaled absolute mean difference:

∆y

µy

=
E|yi − yj|

µy

. (4)

The Gini index is defined as half of the relative mean difference:

Gy =
∆y

2µy

. (5)
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Defining an inequality or poverty measure with respect to a class of un-

derlying social welfare functions is called the normative approach to income

inequality or poverty. Given the Gini social welfare function

WG(y) = 2

∫ +∞

0

y(1− Fy(y))dFy(y) (6)

and the corresponding equally-distributed-equivalent income (EDEI),8

ΞG(y) =
WG(y)

WG(1)
=

WG(y)

1
= 2

∫ +∞

0

y(1− Fy(y))dFy(y), (7)

the Gini index can then be defined using ΞG(y) as

Gy=
µy − ΞG(y)

µy

, (8)

which implies

ΞG(y) = µy(1−Gy). (9)

The most popular poverty measure is the poverty rate or headcount ratio:

H = P (y < z) = Fy(z) =

∫ +∞

0

I(y < z)dFy(y), (10)

which indicates the proportion of the population whose incomes fall below

the poverty line z. The other two often-cited poverty measures are the mean

8For the discrete distribution WG(y) =
∫ +∞
0

y(1− Fy(y))dFy(y) = 1
n2

∑n
i=1(2n− 2i +

1)yi. The term 1
n2

∑n
i=1(2n−2i+1)yi can be rewritten as 2

n

∑n
i=1(1−

i
n + 1

2n )yi, in which
(1− i

n + 1
2n ) is a discrete representation of the rank-based weight in the continuous case

(1− Fy(y)).
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poverty gap ratio of the poor:

µxp
=

∫ +∞
0

I(y < z) z−y
z

dFy(y)∫ +∞
0

I(y < z)dFy(y)
(11)

and the mean poverty gap ratio of the population:

µx = Hµxp
=

∫ +∞

0

I(y < z)
z − y

z
dFy(y). (12)

The former measures the depth of poverty among the poor while the latter

gauges the depth of poverty of the whole population.

The poverty rate and mean poverty gap ratios are criticized by Sen

(1976) because each alone cannot capture all important dimensions (inci-

dence, depth and inequality) of poverty. It is also worth noting the FGT

index of poverty proposed by Foster, Greer, and Thorbecke (1984) is closely

related to H and µxp
. The FGT index of poverty with order α is defined as

FGTα =

∫ +∞

0

I(y < z)

(
z − y

z

)α

dFy(y). (13)

The parameter α can be set to 0, 1, 2, 3, etc. and the higher the value of α

the higher the degree of poverty aversion that is imposed on the FGT index.

If α = 0, then FGT0 = H. If α = 1, FGT1 = Hµxp
= µx. When α ≥ 2,

FGTα can measure the degree of inequality. It is its additive decomposability

that makes the FGT index attractive to applied researchers.

The Sen index of poverty intensity (S), which incorporates the incidence,

depth and inequality of poverty simultaneously, can be defined according to
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Figure 2 in Xu and Osberg (2002, p. 148):9

S = 2

∫ +∞

0

I(y < z)

(
z − y

z

)(
1− Fy(y)

Fy(z)

)
dFy(y). (14)

The Sen index can be viewed as the product of three poverty measures—H

(incidence), µxp
(depth), and (1−Gxp) (inequality):

S = H · µxp
· (1−Gxp) (15)

as shown in Xu and Osberg (2002).10 In view of equation (9), it can be shown

9When the income distribution is discrete, given that q yi’s out of n yi’s are less than
z,

S =
2
q

q∑
i=1

(
z − yi

z

)(
1− i

n + 1
2n

q
n

)
=

1
q2

q∑
i=1

(
z − yi

yi

)
(2n− 2i + 1) .

Note that
(

1− i
n + 1

2n
q
n

)
corresponds to

(
1−Fy(y)

Fy(z)

)
in the continuous case.

10Note that Bishop, Formby, and Zheng (1997) have derived asymptotic statistical re-
sults for

S = H

[
µxp

+ (1− µxp
)Gyp

(
q

q + 1

)]
where Gyp is the Gini index of incomes of the poor (yp). This paper focuses on the large
sample version of the above

S = H
[
µxp

+ (1− µxp
)Gyp

]
where as n →∞, q/(q+1) → 1. Xu and Osberg (2002) have noted that if Gxp is computed
based on xp arranged in non-increasing order, then

S = H · µxp
· (1−Gxp);

otherwise, we have
S = H · µxp

· (1 + Gxp).

A similar argument can be made for

Sm = H · µxp
· (1−Gx).
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that

S = H · µxp
· (1−Gxp)

= H · ΞG(xp)

=
∫ +∞

0
I(y < z)dFy(y)

2
R+∞
0 I(y<z) z−y

z

�
1−Fy(y)

Fy(z)

�
dFy(y)R+∞

0 I(y<z)dFy(y)

= 2
∫ +∞

0
I(y < z) z−y

z

(
1−Fy(y)

Fy(z)

)
dFy(y).

(16)

The modified Sen index can be defined according to Figure 3 in Xu and

Osberg (2002, p. 149):11

Sm = 2

∫ +∞

0

I(y < z)

(
z − y

z

)
(1− Fy(y)) dFy(y), (17)

which is the product of three poverty measures—H (incidence), µxp
(depth),

and (1−Gx) (inequality):12

Sm = H · µxp
· (1−Gx) (18)

as shown in Xu and Osberg (2002). Because Hµxp
= µx and in view of

11When the income distribution is discrete,

Sm =
2
n

q∑
i=1

(
z − yi

z

)(
1− i

n
+

1
2n

)
=

1
n2

q∑
i=1

(
z − yi

z

)
(2n− 2i + 1) .

Note that
(
1− i

n + 1
2n

)
corresponds to (1− Fy(y)) in the continuous case. Both are the

rank-based weights.
12 When the income distribution is discrete, given that q yi’s out of n yi’s are less than

z,

Sm =
2
n

q∑
i=1

(
z − yi

z

)(
1− i

n
+

1
2n

)
=

1
n2

q∑
i=1

(
z − yi

yi

)
(2n− 2i + 1) .

Note that
(
1− i

n + 1
2n

)
corresponds to (1− Fy(y)).

10



equation (9), it can be shown that

Sm = H · µxp
· (1−Gx)

= µx · (1−Gx)

= ΞG(x)

= 2
∫ +∞

0
I(y < z)y−z

z
(1− Fy(y))dFy(y).

(19)

3 Statistical Inference Using U-Statistics

In this section, the links between U-statistics and the inequality and poverty

measures are examined on the basis of one-sample U-statistics.13

Consider a generic estimable parameter (θ) of the population distribution

function Fy:

θ =

∫
· · ·
∫

ϕ(y1, . . . , ym)dFy(y1) · · · dFy(ym) (20)

where ϕ(y1, . . . , ym) is a symmetric function of m independent identically

distributed (i.i.d.) random variables, called the kernel for θ.14 The smallest

integer m is called the order of θ. Then the corresponding estimator (U) of

the parameter θ, called a U-statistic, is defined as the function of an i.i.d.

13 For a general introduction to the U-statistics, see Hoeffding (1948), Randles and
Wolfe (1979), Serfling (1980), Lee (1990), and Bishop, Formby, and Zheng (1998).

14When the kernel ϕ∗ (·) is not symmetric, it can be modified to be symmetric by using
ϕ (y1, . . . , ym) = 1

m!

∑
β∈B ϕ∗ (y1, . . . , ym) where the summation is over B = {β|β is a

permutation of the integers 1, . . . ,m}.
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sample {y1, y2, . . . , yn} from Fy:

U =
1 n

m


∑
α∈A

ϕ(yα1, . . . , yαm) (21)

where A is the collection of all

 n

m

 unordered subsets of m integers

chosen without replacement from the set {1, 2, . . . , n} and α is any one of

those unordered subsets. It can be shown that the expected value of the

U-statistic U is θ; that is, E(U) = θ.

The sample proportion, a U-statistic for the estimable parameter of order

1 ( θ1 = Fy(z)) with the symmetric kernel for ϕ1(y) = I(y < z), is given by

U1 = F̂y(z) =
1 n

1


n∑

i=1

I(yi < z) =
1

n

n∑
i=1

I(yi < z) =

∫ +∞

0

I(y < z)dF̂y(y),

where F̂y is the empirical counterpart of Fy. U1 is an unbiased estimator for

θ1 = Fy(z) =
∫ +∞

0
I(y < z)dFy(y). U1 can be viewed as the estimator of

the poverty rate Ĥ. The sample mean, another U-statistic for the estimable

parameter of order 1 (θ2 = µy) with the symmetric kernel for the ϕ2(y) = y,

is given by

U2 = µ̂y =
1 n

1


n∑

i=1

yi =
1

n

n∑
i=1

yi =

∫ +∞

0

ydF̂y(y), (22)
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which is an unbiased estimator for θ2 =
∫ +∞

0
ydFy(y). This U-statistic has a

number of commonly seen examples such as the sample mean income (µ̂y),

the sample mean poverty gap ratio of the poor (µ̂xp
), and the sample mean

poverty gap ratio of the population ( µ̂x). The sample variance, another U-

statistic for the estimable parameter of order 2 (θ3 = σ2
y) with the symmetric

kernel ϕ3(y1, y2) = 1
2
(y1 − y2)

2,15 is defined as16

U3 = σ̂2
y =

1 n

2


∑
i<j

1

2
(yi − yj)

2 =
1

(n− 1)

(
n∑

i=1

y2
i − nµ̂2

y

)

=

∫ +∞

0

(y − µy)
2dF̂y(y), (23)

15 Note that this kernel is made to be symmetric from a more intuitive but nonsymmetric
one. For σ2

y = E(y2) − E(y)E(y), a more intuitive but nonsymmetric kernel is either
ϕ1 = y2

1 − y1y2 or ϕ2 = y2
2 − y2y1. To make it symmetrical, the new kernel is the average

of two nonsymmetric kernels.

ϕ3(y1, y2) =
1
2
(ϕ1 + ϕ2) =

1
2
[(y2

1 − y1y2) + (y2
2 − y2y1)] =

1
2
(y1 − y2)2.

16 Note that
∑

i<j represents the sum of all cases where 1 ≤ i < j ≤ n while
∑n

i=1

represents the sum from i = 1 to i = n. Therefore,

σ̂2
y = 10

@ n
2

1
A

∑
i<j

1
2 (yi − yj)

2

= 2
n(n−1)

∑
i<j

1
2 (yi − yj)

2

= 1
n(n−1)

∑
i<j (yi − yj)

2

= 1
n(n−1)

∑
i<j

(
y2

i + y2
j − 2yiyj

)
= 1

n(n−1)

[
n
∑n

i=1 y2
i − n (

∑n
i=1 yi)

2
]

= 1
(n−1)

∑n
i=1

[
y2

i − n
n2 (
∑n

i=1 yi)
2
]

= 1
(n−1)

(∑n
i=1 y2

i − nµ̂2
y

)
.
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which is an unbiased estimator for θ3 =
∫ +∞

0
(y−µy)

2dFy(y). The population

variance is a measure of income inequality.17

It is now useful to introduce the variance of a generic U-statistic U . First,

let the conditional expectation of the kernel function of order m be

ϕc(y1, y2, . . . , yc) = E[ϕ(y1, y2, . . . , yc, Yc+1, . . . , Ym)] (24)

on the basis of c (c < m) out of m i.i.d. random variables (while Yc+1, . . . , Ym

are not conditioned on) and its variance be

ζc = V ar[ϕc(y1, y2, . . . , yc)] = E[ϕ2
c(y1, y2, . . . , yc)]− θ2

c , (25)

where θc is the mean of ϕc(y1, y2, . . . , yc).
18 Second, it can be shown that the

variance of the generic U-statistic, V ar(U), for the estimable parameter θ of

order m is given by

V ar(U) =

 n

m

−1
m∑

i=1

 m

i

 n−m

m− i

 ζ i. (26)

The terms in

 n

m

−1 m

i

 n−m

m− i

 convey useful information: there

are

 n

m

 ways selecting m out of n elements; then there are

 m

i

 ways

17The sample absolute mean difference is also a common example and will be introduced
later. The coefficient of variation is a function of two U-statistics—the sample mean and
variance.

18 Note that c represents any c of m observations. Fraser (1957, p. 224–225) and Randles
and Wolfe (1979, p. 64-65) provide an intuitive explanation on ζc.
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of selecting i out of m elements; and

 n−m

m− i

 ways of selecting (m − i)

out of the remaining (n−m) elements.

The above definition of the variance of a generic U-statistic can be used to

find the variances for the following three U-statistics—the sample proportion,

the sample mean and the sample variance. For the sample proportion, m = 1,

ϕ1(y1) = I(y < z), y1 is known or conditioned on. and

V ar(F̂y(z)) =

 n

1

−1
1∑

i=1

 1

i

 n− 1

1− i

 ζ i =
1

n
V ar(I(y < z))

=
1

n

{∫ +∞

0

[I(y < z)]2 dFy(y)− (Fy(z))2

}
=

Fy(z)(1− Fy(z))

n
. (27)

For the sample mean, m = 1, ϕ1(y1) = y1, y1 is known or conditioned on,

and

V ar(µ̂y) =

 n

1

−1
1∑

i=1

 1

i

 n− 1

1− i

 ζ i =
1

n
V ar(y1) =

σ2
y

n
. (28)

For the sample variance, m = 2 and a few steps must be taken. Given that

y1 is known,

ϕ1(y1) = E

[
1

2
(y1 − Y2)

2

]
=

1

2
[σ2

y + (y1 − µy)
2]. (29)

When both y1 and y2 are known,

ϕ2(y1, y2) =
1

2
(y1 − y2). (30)
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Here, the derivation of ϕ1(y1) is based on σ2
y = E(Y 2

2 )−µ2
y. From the above,

ζ1 = V ar

{
1

2
[σ2

y + (y1 − µy)
2]

}
=

1

4
(µ4 − σ4

y), (31)

and

ζ2 = V ar

[
1

2
(y1 − y2)

2

]
=

1

2
(µ4 + σ4

y), (32)

where µ4 is the 4th raw moment of Fy.
19 Substituting ζ1 and ζ2 into the

following expression yields

V ar(σ̂2
y) =

 n

2

−1
2∑

i=1

 2

i

 n− 2

2− i

 ζ i (33)

=

 n

2

−1

(2(n− 2)ζ1 + ζ2) (34)

=
4ζ1

n
+

2ζ2

n(n− 1)
− 4ζ1

n(n− 1)
(35)

=
µ4 − σ4

y

n
+

2σ4
y

n(n− 1)
(36)

=
µ4 − σ4

y

n
+ O(n−2). (37)

As can be seen from the above, the asymptotic variance of the sample variance

is
µ4−σ4

y

n
as n →∞.

The above results can be generalized to the case of s U-statistics. The

joint limiting distribution of Ui of order mi, for i = 1, 2, . . . , s, is a multi-

variate normal distribution. If Fy(y) is continuous and has a finite variance,

19 The detailed derivation of the above results can be found in Serfling (1980, p. 182,
Example A).
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which implies E[ϕi(y1, . . . , ymi
)]2 exists, then, as n → ∞, the joint distribu-

tion of [√
n (U1 − θ1) ,

√
n (U2 − θ2) , . . . ,

√
n (Us − θs)

]
(38)

converges to the multivariate normal distribution with mean zero and variance-

covariance matrix
{
mimjζ ij

}
with i, j = 1, 2, . . . , s and

ζ ij = E
[
ϕi(y1, . . . , ymi

) · ϕj(y1, . . . , ymi
, ymj+1, . . . , y2mj−mi

)
]
− θiθj (39)

with mi ≤ mj.
20

To make sense of the joint limiting distribution with a concrete example,

let s = 2 and let the two U-statistics be the sample mean and sample absolute

20E
[
ϕi(y1, . . . , ymi

) · ϕi(y1, . . . , ymi
, ymj+1, . . . , y2mj−mi

)
]
is a conditional variance if yc,

c = 1, 2, . . . ,mi, are known. According to Hoeffding (1948, page 304, equations 6.1, 6.2,
and 6.3) and Lee (1990, pages 11–12, Theorem 2 and its proof), this can be illustrated by
the following. Note that∫

· · ·
∫

ϕi(y1, . . . , ymi)
mi∏

i=c+1

dFy(yi) = ϕc(y1, . . . , yc)

and ∫
· · ·
∫

ϕi(y1, . . . , yc, ymj+1, . . . , y2mj−c)
2mj−c∏

i=mj+1

dFy(yi) = ϕc(y1, . . . , yc).

Hence,

E
[
ϕi(y1, . . . , ymi

) · ϕi(y1, . . . , yc, ymj+1, . . . , y2mj−c)
]

=
∫
· · ·
∫

ϕi(y1, . . . , ymi
) · ϕi(y1, . . . , yc, ymj+1, . . . , y2mj−c)

∏2mj−c
i=1 dFy(yi)

=
∫
· · ·
∫ {∫

· · ·
∫

ϕi(y1, . . . , ymi
)
∏mi

i=c+1 dFy(yi)
}
×{∫

· · ·
∫

ϕi(y1, . . . , yc, ymj+1, . . . , y2mj−c)
∏2mj−c

i=mj+1 dFy(yi)
}∏c

i=1 dFy(yi)
=
∫
· · ·
∫

ϕ2
c(y1, . . . , yc)

∏c
i=1 dFy(yi)

= E
[
ϕ2

c(y1, . . . , yc)
]
.
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mean difference:21

U1 = µ̂y =
1

n

n∑
i=1

yi (40)

is the estimator for θ1 = µy and

U2 = ∆̂y =
2

n (n− 1)

∑
i<j

|yi − yj| (41)

is the estimator for θ2 = ∆y. Here m1 = 1 and m2 = 2; ϕ1(y1) = y1 and

ϕ2(y1, y2) = |y1 − y2|. Hence,

m2
1ζ11 = E

[
y2

1

]
− θ2

1 = ζ(θ1) (42)

is the variance of
√

n (U1 − θ1),

m2
2ζ22 = 4

{
E
[
|y1 − y2|2

]
− θ2

2

}
= 4ζ(θ2) (43)

is the variance of
√

n (U2 − θ2), and

m1m2ζ12 = 2 [E (y1|y1 − y2|)− θ1θ2]

= 2
[∫ ∫

y1|y1 − y2|dFy(y1)dFy(y2)− θ1θ2

]
= 2ζ (θ1, θ2)

(44)

is the covariance between
√

n (U1 − θ1) and
√

n (U2 − θ2).

21 For simplicity, we freely redefine Ui, i = 1, 2, 3, . . . from time to time.
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The consistent estimators for ζ (θ1), ζ (θ2), and ζ (θ1, θ2) are22

ζ̂ (θ1) =
1

(n− 1)

(
n∑

i=1

y2
i − nU2

1

)
, (45)

ζ̂ (θ2) =
2

n (n− 1) (n− 2)

×
∑

i<j<k

{|yi − yj||yi − yk|+ |yj − yi||yj − yk|+ |yk − yi||yk − yj|}−U2
2 , (46)

and

ζ̂ (θ1, θ2) =
1

n(n− 1)

∑
i<j

(yi + yj)|yi − yj| − U1U2. (47)

One of the important applications of the asymptotic distribution of U-

statistics is to establish the asymptotic distribution of the sample Gini index.

Based on the knowledge that the sample Gini index of incomes y is half of

the relative mean difference which is the ratio of the sample absolute mean

difference to the sample mean, as pointed by Hoeffding (1948), the sample

Gini index, Ĝy =
b∆y

2bµy
, has an asymptotic normal distribution. More precisely,

as n → ∞,
√

n(Ĝy − ∆y

2µy
) converges to a normal distribution with mean 0

and variance:
∆2

y

4µ4
y

ζ(µy)−
∆y

µ3
y

ζ(µy, ∆y) +
1

µ2
y

ζ(∆y). (48)

where the population parameters for µy and ∆y in the ζ functions are used

replace θ1 and θ2.
23

The key application of the asymptotic distribution of U-statistics pre-

22 See Bishop et al. (1997).
23 Nyg̊ard and Sandström (1981, p. 384) give an estimator of the asymptotic variance

of Ĝy as
V̂ ar(Ĝy) =
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sented in this paper is to establish the asymptotic distributions of the sam-

ple Sen and modified Sen indices and their components. This will be more

involved. In the Sen index S = H ·µxp
·
[
1−Gxp

]
and the modified Sen index

Sm = H ·µxp
· [1−Gx], the Gini index of poverty gap ratios of the population

Gx and that of the poor Gxp differ from the Gini index of incomes Gy. It can

be shown that24

Gx =
1

2µxz
3

∫ +∞

0

∫ +∞

0

I(y1 < z)I(y2 < z)|y1 − y2|dFy(y1)dFy(y2) (49)

and

Gxp =
1

2µxp
z3[Fy(z)2]

∫ +∞

0

∫ +∞

0

I(y1 < z)I(y2 < z)|y1 − y2|dFy(y1)dFy(y2).

(50)

That is, the sample estimators of H and µxp
are U-statistics and the sample

counterparts of Gx and Gxp are functions of U-statistics.

It is now necessary to find the estimators for H, µxp
, Gxp , Gx, S and

Sm and their asymptotic distributions. Given the sample of size n from Fy,

{y1, y2, . . . , yn}, the U-statistic

U1 =
1

n

n∑
i=1

I(yi < z) = Ĥ (51)

n−1∑
i=1

n−1∑
j=1

[
min

(
i

n
,
j

n

)
−
(

i

n

)(
j

n

)](
2i− 1

n
− 1− Ĝy

)(
2j − 1

n
− 1− Ĝy

)
(yi+1−yi)(yj+1−yj).

24 See Appendix A.
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is an estimator for H. The U-statistic

U2 =
1

n

n∑
i=1

yiI(yi < z) = µ̂y<z. (52)

is an estimator for µy<z. Then the estimator for µx is given by

µ̂x = U1

(
1− U2

zU1

)
. (53)

The estimator for µxp
is given by

µ̂xp
= 1− U2

zU1

. (54)

The sample absolute mean difference for y < z is given by

U3 =
1

(n(n− 1))

n∑
i=1

n∑
j=1

|yi − yj|I(yi < z)I(yj < z). (55)

According to equation (49), the estimator of Gx is a function of the U-

statistics U1, U2, and U3,

Ĝx =
U3

2z3U1

(
1− U2

zU1

) (56)

Based on equation (50), the estimator of Gxp is also a function of the U-

statistics U1, U2, and U3,

Ĝxp =
U3

2z3U2
1

(
1− U2

zU1

) . (57)
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Since Ŝ (Ŝm) is a function of Ĥ, µ̂xp
, and Ĝxp (or Ĝx), combining equations

(51), (54) and (50) [or (49)] yields

Ŝ =
2z3U2

1 − 2z2U1U2 − U3

2z3U1

(58)

and

Ŝm =
2z3U1 − 2z2U2 − U3

2z3
. (59)

To understand the consistency of the above estimators, note that they

are continuous functions of U-statistics without involving n. Also, assume

that these functions have their second order partial derivatives in the neigh-

borhood of the true parameters θ1, θ2, and θ3. Under these conditions, these

estimators are consistent and have an asymptotic joint distribution [see Ho-

effding (1948), Theorem 7.5]: the U-statistics U1, U2, and U3 are consistent

estimators for

θ1 =

∫ +∞

0

I(y < z)dFy(y), (60)

θ2 =

∫ +∞

0

I(y < z)ydFy(y), (61)

and

θ3 =

∫ +∞

0

∫ +∞

0

I(y1 < z)I(y2 < z)|y1 − y2|dFy(y1)dFy(y2), (62)

respectively. If Fy is continuous and has a finite variance, then, as n → ∞,

the joint distribution of

√
n (U− θ) =

[√
n (U1 − θ1) ,

√
n (U2 − θ2) ,

√
n (U3 − θ3)

]>
(63)

converges to a multivariate normal distribution function with mean zero and
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variance-covariance matrix

Σ =


θ1(1− θ1) θ2(1− θ1) 2θ3(1− θ1)

θ2(1− θ1) ζ(θ2) 2ζ(θ2, θ3)

2θ3(1− θ1) 2ζ(θ2, θ3) 4ζ(θ3)

 (64)

where

ζ(θ2) =

∫ +∞

0

I(y < z)y2dFy(y)− θ2
2, (65)

ζ(θ3) =

∫ +∞

0

I(y1 < z)

(∫ +∞

0

I(y2 < z)|y1 − y2|dFy(y2)

)2

dFy(y1)− θ2
3,

(66)

and

ζ(θ2, θ3) =

∫ +∞

0

∫ +∞

0

I(y1 < z)I(y < z2)y1|y1 − y2|dFy(y1)dFy(y2)− θ2θ3,

(67)

respectively [see Hoeffding’s Theorem 7.1 (1948) and Bishop, Formby, and

Zheng (1997)].

Given that the estimators of H, µxp
, Gxp , Gx, S and Sm are functions of

U-statistics—U1, U2, and U3—and that
√

n (U− θ)
a→ N (0,Σ), we can find

the limiting distributions for the following two vectors of the estimators

α̂= [Ĥ, µ̂xp
, Ĝxp , Ŝ]> (68)

and

α̂m= [Ĥ, µ̂xp
, Ĝx, Ŝm]> (69)

for the Sen index and its components and the modified Sen index and its
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components, respectively. The functions h1(w) = w1, h2(w) = 1 − w2

zw1
,

h3(w) = w3

2z3w2
1

�
1− w2

zw1

� , hm3(w) = w3

2z3w1

�
1− w2

zw1

� , h4(w) =
2z3w2

1−2z2w1w2−w3

2z3w1
,

and hm4(w) = 2z3w1−2z2w2−w3

2z3 can be used to define α̂ and α̂m:

α̂ =
[
Ĥ, µ̂xp

, Ĝxp , Ŝ
]>

= H(U) = [h1(U), h2(U), h3(U), h4(U)]> (70)

and

α̂m=
[
Ĥ, µ̂xp

, Ĝx, Ŝm

]>
= Hm(U) = [h1(U), h2(U), hm3(U), hm4(U)]> .

(71)

Similarly, these functions can be used to define α and αm:

α =
[
H, µxp

, Gxp , S
]>

= H(θ) = [h1(θ), h2(θ), h3(θ), h4(θ)]> (72)

and

αm =
[
H, µxp

, Gx, Sm

]>
= Hm(θ) = [h1(θ), h2(θ), hm3(θ), hm4(θ)]> . (73)

Define T = ∂H
∂w
|w=θ or

T =


1 0 0

θ2

zθ2
1

− 1
zθ1

0

θ3(θ2−2zθ1)

2z2θ2
1(zθ1−θ2)2

θ3

2z2θ1(zθ1−θ2)2
1

2z2θ1(zθ1−θ2)

2z3θ2
1+θ3

2z3θ2
1

−1
z

− 1
2z3θ1

 . (74)
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Define Tm = ∂Hm

∂w
|w=θ or

Tm =


1 0 0

θ2

zθ2
1

− 1
zθ1

0

−θ3

2z(zθ1−θ2)2
θ3

2z2(zθ1−θ2)2
1

2z2(zθ1−θ2)

1 −1
z

− 1
2z3

 . (75)

As n →∞, the joint distribution of

√
n(α̂−α) (76)

converges to a multivariate normal distribution with mean zero and variance-

covariance matrix

Ω = TΣT>. (77)

Similarly, as n →∞, the joint distribution of

√
n(α̂m −αm) (78)

converges to a multivariate normal distribution function with mean zero and

variance-covariance matrix

Ωm = TmΣT>
m. (79)

Ω and Ωm must be estimated. To do so, one must estimate θ1, θ2, θ3,

ζ(θ2), ζ(θ3), and ζ(θ2, θ3) by U1, U2, U3, ζ̂(θ2), ζ̂(θ3), and ζ̂(θ2, θ3). U1, U2,

and U3 are given by equations (51), (52), and (55), respectively. ζ̂(θ2), ζ̂(θ3),
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and ζ̂(θ2, θ3) are given, respectively, by:

ζ̂(θ2) =
1

(n− 1)

(
n∑

i=1

y2
i I(yi < z)− nU2

2

)
, (80)

ζ̂(θ3) =
2

n (n− 1) (n− 2)

∑
i<j<k

{|yi−yj||yi−yk|+|yj−yi||yj−yk|+|yk−yi||yk−yj|}

× I(yi < z)I(yj < z)I(yk < z)− U2
3 , (81)

and

ζ̂(θ2, θ3) =
1

n (n− 1)

∑
i<j

(yi + yj)|yi − yj|I(yi < z)I(yj < z)− U2U3. (82)

This completes the explanation on why the U-statistics can be used to handle

the statistical inferential issues for the Sen and modified Sen indices and their

components.

4 Concluding Remarks

Considering the fact that U-statistics are not introduced in conventional

econometric textbooks, this paper advocates the use of U-statistics for in-

come inequality and poverty measures with special focus on the variance, the

absolute/relative mean difference, the Gini index, the poverty rate, the mean

poverty gap ratios, the Foster-Greer-Thorbecke (FGT) index, the Sen index,

and the modified Sen index.

The framework and general results for the U-statistics illustrated in this

paper are useful for establishing statistical procedures for widely-used income
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inequality and poverty measures. The U-statistics approach for income in-

equality and poverty measures represents a more attractive alternative to the

approach that depends primarily on a limited number of quantiles or order

statistics because the U-statistics approach uses all, rather than parts of, the

sample information.

Although the variances of some U-statistics may appear to be complex,

they are merely complex functions of conditional expectations. The literature

on U-statistics also suggests that these quantities can often be estimated by

the bootstrap method.
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Appendix A. Definitions of Gx and Gxp

From the statistical point of view, the Gini index of income inequality

can also be defined as half of the relative mean difference

Gy =
1

2µy

∫ +∞

0

∫ +∞

0

|y1 − y2|dFy(y1)dFy(y2) (83)

or

Gy =
1

2µy

∫ +∞

0

∫ +∞

0

|y1 − y2|fy(y1)fy(y2)dy1dy2 (84)

where y1 and y2 are two variates from the same distribution function Fy. The

Gini index of the poverty gap ratios of the population Gx and that of the

poor Gxp differ from the Gini index of incomes Gy. The poverty gap ratio

is a function of income; that is, x = g(y) = z−y
z

for y < z and x = 0 for

y ≥ z. The Gini index of poverty gap ratios of the population should be

defined on the probability density function of x, fx while that of the poor

should be defined on the probability density function of x, fx|x>0 = fx

Fy(z)
.

The support for fy is [0, +∞) and that for fx and fx|x>0 is [0, z). To find fx

and fx|x>0 , note that x = g(y) = max{0, z−y
z
} and

∗
y = g−1(x) = z(1 − x).

Thus, fx(x) = fy(y)|∂x
∂y
| = 1

z
fy(y) and fx|x>0(x) = 1

zFy(z)
fy(y) for y ∈ [0, z],

which corresponds with x ∈ [1, 0]. Gx and Gxp can be defined as

Gx =
1

2µx

∫ 1

0

∫ 1

0

|x1 − x2|fx(x1)fx(x2)dx1dx2 (85)

and

Gxp =
1

2µxp

∫ 1

0

∫ 1

0

|x1 − x2|fx|x>0(x1)fx|x>0(x2)dx1dx2, (86)

respectively. Substituting x = g(y) = max{0, z−y
z
}, fx(x) = 1

z
fy(y), and
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fx|x>0(x) = 1
zFy(z)

fy(y) into the above expressions and changing the limits

yields

Gx =
1

2µx

∫ z

0

∫ z

0

1

z
|y1 − y2|

1

z
fy(y1)

1

z
fy(y2)dy1dy2, (87)

and

Gxp =
1

2µxp

∫ z

0

∫ z

0

1

z
|y1 − y2|

1

zFy(z)
fy(y1)

1

zFy(z)
fy(y2)dy1dy2, (88)

respectively. After some rearrangements, these expressions become

Gx =
1

2µxz
3

∫ +∞

0

∫ +∞

0

I(y1 < z)I(y2 < z)|y1 − y2|dFy(y1)dFy(y2) (89)

and

Gxp =
1

2µxp
z3[Fy(z)2]

∫ +∞

0

∫ +∞

0

I(y1 < z)I(y2 < z)|y1 − y2|dFy(y1)dFy(y2),

(90)

respectively. The above can be verified using simple numerical examples.25

25 The two different ways of computing Gx and Gxp
can be illustrated by using the

following data. Let y = [1/2, 3/2, 2, 4]′ and z = 2. Then, µy = 2,
∗
y = [1/2, 3/2, 2, 2]′ ,

x = [3/4, 1/4, 0, 0]′and xp = [3/4, 1/4]′. From the above, µx = 1/4 and µxp
= 1/2. Using

the data set, the two approaches,

Gx =
1

2( 1
4 )42

(
2
4

+
3
4

+
3
4

+
2
4

+
1
4

+
1
4

+
3
4

+
1
4

+
3
4

+
1
4

)
=

5
8

and

Gx =
1

2( 1
4 )23( 1

2 )242

(
2
2

+
3
2

+
3
2

+
2
2

+
1
2

+
1
2

+
3
2

+
1
2

+
3
2

+
1
2

)
=

5
8

give the same answer. Similarly, using the data set, the two approaches,

Gxp
=

1
2( 1

2 )22

(
2
4

+
2
4

)
=

1
4
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and
Gxp

=
1

2( 1
2 )23( 1

2 )222
(1 + 1) =

1
4

give the same answer.
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